Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Mixed Linear Regression with Guarantees: Taming an Intractable Problem with Invex Relaxation (2206.01167v1)

Published 2 Jun 2022 in cs.LG and stat.ML

Abstract: In this paper, we study the problem of sparse mixed linear regression on an unlabeled dataset that is generated from linear measurements from two different regression parameter vectors. Since the data is unlabeled, our task is not only to figure out a good approximation of the regression parameter vectors but also to label the dataset correctly. In its original form, this problem is NP-hard. The most popular algorithms to solve this problem (such as Expectation-Maximization) have a tendency to stuck at local minima. We provide a novel invex relaxation for this intractable problem which leads to a solution with provable theoretical guarantees. This relaxation enables exact recovery of data labels. Furthermore, we recover a close approximation of the regression parameter vectors which match the true parameter vectors in support and sign. Our formulation uses a carefully constructed primal dual witnesses framework for the invex problem. Furthermore, we show that the sample complexity of our method is only logarithmic in terms of the dimension of the regression parameter vectors.

Citations (5)

Summary

We haven't generated a summary for this paper yet.