Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Alternating Minimization for Mixed Linear Regression (1310.3745v2)

Published 14 Oct 2013 in stat.ML

Abstract: Mixed linear regression involves the recovery of two (or more) unknown vectors from unlabeled linear measurements; that is, where each sample comes from exactly one of the vectors, but we do not know which one. It is a classic problem, and the natural and empirically most popular approach to its solution has been the EM algorithm. As in other settings, this is prone to bad local minima; however, each iteration is very fast (alternating between guessing labels, and solving with those labels). In this paper we provide a new initialization procedure for EM, based on finding the leading two eigenvectors of an appropriate matrix. We then show that with this, a re-sampled version of the EM algorithm provably converges to the correct vectors, under natural assumptions on the sampling distribution, and with nearly optimal (unimprovable) sample complexity. This provides not only the first characterization of EM's performance, but also much lower sample complexity as compared to both standard (randomly initialized) EM, and other methods for this problem.

Citations (25)

Summary

We haven't generated a summary for this paper yet.