Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast generation of simple directed social network graphs with reciprocal edges and high clustering (2206.00502v2)

Published 1 Jun 2022 in cs.SI

Abstract: Online social networks have emerged as useful tools to communicate or share information and news on a daily basis. One of the most popular networks is Twitter, where users connect to each other via directed follower relationships. Researchers have studied Twitter follower graphs and described them with various topological features. Collecting Twitter data, especially crawling the followers of users, is a tedious and time-consuming process and the data needs to be treated carefully due to its sensitive nature, containing personal user information. We therefore aim at the fast generation of synthetic directed social network graphs with reciprocal edges and high clustering. Our proposed method is based on a previously developed model, but relies on less hyperparameters and has a significantly lower runtime. Results show that the method does not only replicate the crawled directed Twitter graphs well w.r.t. several topological features and the application of an epidemics spreading process, but that it is also highly scalable which allows the fast creation of bigger graphs that exhibit similar properties as real-world networks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Christoph Schweimer (3 papers)

Summary

We haven't generated a summary for this paper yet.