Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Co-evolutionary dynamics in social networks: A case study of Twitter (1309.6001v3)

Published 23 Sep 2013 in cs.SI and physics.soc-ph

Abstract: Complex networks often exhibit co-evolutionary dynamics, meaning that the network topology and the state of nodes or links are coupled, affecting each other in overlapping time scales. We focus on the co-evolutionary dynamics of online social networks, and on Twitter in particular. Monitoring the activity of thousands of Twitter users in real-time, and tracking their followers and tweets/retweets, we propose a method to infer new retweet-driven follower relations. The formation of such relations is much more likely than the exogenous creation of new followers in the absence of any retweets. We identify the most significant factors (reciprocity and the number of retweets that a potential new follower receives) and propose a simple probabilistic model of this effect. We also discuss the implications of such co-evolutionary dynamics on the topology and function of a social network.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (42)

Summary

We haven't generated a summary for this paper yet.