Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MORE: A Metric Learning Based Framework for Open-domain Relation Extraction (2206.00289v1)

Published 1 Jun 2022 in cs.CL and cs.AI

Abstract: Open relation extraction (OpenRE) is the task of extracting relation schemes from open-domain corpora. Most existing OpenRE methods either do not fully benefit from high-quality labeled corpora or can not learn semantic representation directly, affecting downstream clustering efficiency. To address these problems, in this work, we propose a novel learning framework named MORE (Metric learning-based Open Relation Extraction). The framework utilizes deep metric learning to obtain rich supervision signals from labeled data and drive the neural model to learn semantic relational representation directly. Experiments result in two real-world datasets show that our method outperforms other state-of-the-art baselines. Our source code is available on Github.

Citations (7)

Summary

We haven't generated a summary for this paper yet.