Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Neural Tagging Model for Open Relation Extraction (1908.01761v3)

Published 26 Jul 2019 in cs.CL

Abstract: Open relation extraction (ORE) remains a challenge to obtain a semantic representation by discovering arbitrary relation tuples from the unstructured text. Conventional methods heavily depend on feature engineering or syntactic parsing, they are inefficient or error-cascading. Recently, leveraging supervised deep learning structures to address the ORE task is an extraordinarily promising way. However, there are two main challenges: (1) The lack of enough labeled corpus to support supervised training; (2) The exploration of specific neural architecture that adapts to the characteristics of open relation extracting. In this paper, to overcome these difficulties, we build a large-scale, high-quality training corpus in a fully automated way, and design a tagging scheme to assist in transforming the ORE task into a sequence tagging processing. Furthermore, we propose a hybrid neural network model (HNN4ORT) for open relation tagging. The model employs the Ordered Neurons LSTM to encode potential syntactic information for capturing the associations among the arguments and relations. It also emerges a novel Dual Aware Mechanism, including Local-aware Attention and Global-aware Convolution. The dual aware nesses complement each other so that the model can take the sentence-level semantics as a global perspective, and at the same time implement salient local features to achieve sparse annotation. Experimental results on various testing sets show that our model can achieve state-of-the-art performances compared to the conventional methods or other neural models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shengbin Jia (5 papers)
  2. Yang Xiang (187 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.