Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuous Prediction with Experts' Advice (2206.00236v2)

Published 1 Jun 2022 in cs.LG, math.PR, and stat.ML

Abstract: Prediction with experts' advice is one of the most fundamental problems in online learning and captures many of its technical challenges. A recent line of work has looked at online learning through the lens of differential equations and continuous-time analysis. This viewpoint has yielded optimal results for several problems in online learning. In this paper, we employ continuous-time stochastic calculus in order to study the discrete-time experts' problem. We use these tools to design a continuous-time, parameter-free algorithm with improved guarantees for the quantile regret. We then develop an analogous discrete-time algorithm with a very similar analysis and identical quantile regret bounds. Finally, we design an anytime continuous-time algorithm with regret matching the optimal fixed-time rate when the gains are independent Brownian Motions; in many settings, this is the most difficult case. This gives some evidence that, even with adversarial gains, the optimal anytime and fixed-time regrets may coincide.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (5)