Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EMS: Efficient and Effective Massively Multilingual Sentence Embedding Learning (2205.15744v2)

Published 31 May 2022 in cs.CL

Abstract: Massively multilingual sentence representation models, e.g., LASER, SBERT-distill, and LaBSE, help significantly improve cross-lingual downstream tasks. However, the use of a large amount of data or inefficient model architectures results in heavy computation to train a new model according to our preferred languages and domains. To resolve this issue, we introduce efficient and effective massively multilingual sentence embedding (EMS), using cross-lingual token-level reconstruction (XTR) and sentence-level contrastive learning as training objectives. Compared with related studies, the proposed model can be efficiently trained using significantly fewer parallel sentences and GPU computation resources. Empirical results showed that the proposed model significantly yields better or comparable results with regard to cross-lingual sentence retrieval, zero-shot cross-lingual genre classification, and sentiment classification. Ablative analyses demonstrated the efficiency and effectiveness of each component of the proposed model. We release the codes for model training and the EMS pre-trained sentence embedding model, which supports 62 languages ( https://github.com/Mao-KU/EMS ).

Summary

We haven't generated a summary for this paper yet.