Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Pseudo-Mallows for Efficient Probabilistic Preference Learning (2205.13911v1)

Published 27 May 2022 in stat.ME

Abstract: We propose the Pseudo-Mallows distribution over the set of all permutations of $n$ items, to approximate the posterior distribution with a Mallows likelihood. The Mallows model has been proven to be useful for recommender systems where it can be used to learn personal preferences from highly incomplete data provided by the users. Inference based on MCMC is however slow, preventing its use in real time applications. The Pseudo-Mallows distribution is a product of univariate discrete Mallows-like distributions, constrained to remain in the space of permutations. The quality of the approximation depends on the order of the $n$ items used to determine the factorization sequence. In a variational setting, we optimise the variational order parameter by minimising a marginalized KL-divergence. We propose an approximate algorithm for this discrete optimization, and conjecture a certain form of the optimal variational order that depends on the data. Empirical evidence and some theory support our conjecture. Sampling from the Pseudo-Mallows distribution allows fast preference learning, compared to alternative MCMC based options, when the data exists in form of partial rankings of the items or of clicking on some items. Through simulations and a real life data case study, we demonstrate that the Pseudo-Mallows model learns personal preferences very well and makes recommendations much more efficiently, while maintaining similar accuracy compared to the exact Bayesian Mallows model.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube