Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Limited-memory polynomial methods for large-scale matrix functions (2002.01682v3)

Published 5 Feb 2020 in math.NA and cs.NA

Abstract: Matrix functions are a central topic of linear algebra, and problems requiring their numerical approximation appear increasingly often in scientific computing. We review various limited-memory methods for the approximation of the action of a large-scale matrix function on a vector. Emphasis is put on polynomial methods, whose memory requirements are known or prescribed a priori. Methods based on explicit polynomial approximation or interpolation, as well as restarted Arnoldi methods, are treated in detail. An overview of existing software is also given, as well as a discussion of challenging open problems.

Citations (16)

Summary

We haven't generated a summary for this paper yet.