Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mitigating barren plateaus of variational quantum eigensolvers (2205.13539v2)

Published 26 May 2022 in quant-ph and cs.LG

Abstract: Variational quantum algorithms (VQAs) are expected to establish valuable applications on near-term quantum computers. However, recent works have pointed out that the performance of VQAs greatly relies on the expressibility of the ansatzes and is seriously limited by optimization issues such as barren plateaus (i.e., vanishing gradients). This work proposes the state efficient ansatz (SEA) for accurate ground state preparation with improved trainability. We show that the SEA can generate an arbitrary pure state with much fewer parameters than a universal ansatz, making it efficient for tasks like ground state estimation. Then, we prove that barren plateaus can be efficiently mitigated by the SEA and the trainability can be further improved most quadratically by flexibly adjusting the entangling capability of the SEA. Finally, we investigate a plethora of examples in ground state estimation where we obtain significant improvements in the magnitude of cost gradient and the convergence speed.

Citations (34)

Summary

We haven't generated a summary for this paper yet.