Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BppAttack: Stealthy and Efficient Trojan Attacks against Deep Neural Networks via Image Quantization and Contrastive Adversarial Learning (2205.13383v1)

Published 26 May 2022 in cs.CV, cs.CR, and cs.LG

Abstract: Deep neural networks are vulnerable to Trojan attacks. Existing attacks use visible patterns (e.g., a patch or image transformations) as triggers, which are vulnerable to human inspection. In this paper, we propose stealthy and efficient Trojan attacks, BppAttack. Based on existing biology literature on human visual systems, we propose to use image quantization and dithering as the Trojan trigger, making imperceptible changes. It is a stealthy and efficient attack without training auxiliary models. Due to the small changes made to images, it is hard to inject such triggers during training. To alleviate this problem, we propose a contrastive learning based approach that leverages adversarial attacks to generate negative sample pairs so that the learned trigger is precise and accurate. The proposed method achieves high attack success rates on four benchmark datasets, including MNIST, CIFAR-10, GTSRB, and CelebA. It also effectively bypasses existing Trojan defenses and human inspection. Our code can be found in https://github.com/RU-System-Software-and-Security/BppAttack.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhenting Wang (41 papers)
  2. Juan Zhai (26 papers)
  3. Shiqing Ma (56 papers)
Citations (86)

Summary

We haven't generated a summary for this paper yet.