Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A new self-exciting jump-diffusion process for option pricing (2205.13321v2)

Published 26 May 2022 in q-fin.PR and q-fin.CP

Abstract: We propose a new jump-diffusion process, the Heston-Queue-Hawkes (HQH) model, combining the well-known Heston model and the recently introduced Queue-Hawkes (Q-Hawkes) jump process. Like the Hawkes process, the HQH model can capture the effects of self-excitation and contagion. However, since the characteristic function of the HQH process is known in closed-form, Fourier-based fast pricing algorithms, like the COS method, can be fully exploited with this model. Furthermore, we show that by using partial integrals of the characteristic function, which are also explicitly known for the HQH process, we can reduce the dimensionality of the COS method, and so its numerical complexity. Numerical results for European and Bermudan options show that the HQH model offers a wider range of volatility smiles compared to the Bates model, while its computational burden is considerably smaller than that of the Heston-Hawkes (HH) process.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.