Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-Optimal Algorithms for Autonomous Exploration and Multi-Goal Stochastic Shortest Path (2205.10729v1)

Published 22 May 2022 in cs.LG

Abstract: We revisit the incremental autonomous exploration problem proposed by Lim & Auer (2012). In this setting, the agent aims to learn a set of near-optimal goal-conditioned policies to reach the $L$-controllable states: states that are incrementally reachable from an initial state $s_0$ within $L$ steps in expectation. We introduce a new algorithm with stronger sample complexity bounds than existing ones. Furthermore, we also prove the first lower bound for the autonomous exploration problem. In particular, the lower bound implies that our proposed algorithm, Value-Aware Autonomous Exploration, is nearly minimax-optimal when the number of $L$-controllable states grows polynomially with respect to $L$. Key in our algorithm design is a connection between autonomous exploration and multi-goal stochastic shortest path, a new problem that naturally generalizes the classical stochastic shortest path problem. This new problem and its connection to autonomous exploration can be of independent interest.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Haoyuan Cai (6 papers)
  2. Tengyu Ma (117 papers)
  3. Simon Du (11 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.