Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gender Bias in Meta-Embeddings (2205.09867v3)

Published 19 May 2022 in cs.CL

Abstract: Different methods have been proposed to develop meta-embeddings from a given set of source embeddings. However, the source embeddings can contain unfair gender-related biases, and how these influence the meta-embeddings has not been studied yet. We study the gender bias in meta-embeddings created under three different settings: (1) meta-embedding multiple sources without performing any debiasing (Multi-Source No-Debiasing), (2) meta-embedding multiple sources debiased by a single method (Multi-Source Single-Debiasing), and (3) meta-embedding a single source debiased by different methods (Single-Source Multi-Debiasing). Our experimental results show that meta-embedding amplifies the gender biases compared to input source embeddings. We find that debiasing not only the sources but also their meta-embedding is needed to mitigate those biases. Moreover, we propose a novel debiasing method based on meta-embedding learning where we use multiple debiasing methods on a single source embedding and then create a single unbiased meta-embedding.

Citations (6)

Summary

We haven't generated a summary for this paper yet.