Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyzing Community-aware Centrality Measures Using The Linear Threshold Model (2202.00514v1)

Published 30 Jan 2022 in cs.SI

Abstract: Targeting influential nodes in complex networks allows fastening or hindering rumors, epidemics, and electric blackouts. Since communities are prevalent in real-world networks, community-aware centrality measures exploit this information to target influential nodes. Researches show that they compare favorably with classical measures that are agnostic about the community structure. Although the diffusion process is of prime importance, previous studies consider mainly the famous Susceptible-Infected-Recovered (SIR) epidemic propagation model. This work investigates the consistency of previous analyses using the popular Linear Threshold (LT) propagation model, which characterizes many spreading processes in our real life. We perform a comparative analysis of seven influential community-aware centrality measures on thirteen real-world networks. Overall, results show that Community-based Mediator, Comm Centrality, and Modularity Vitality outperform the other measures. Moreover, Community-based Mediator is more effective on a tight budget (i.e., a small fraction of initially activated nodes), while Comm Centrality and Modularity Vitality perform better with a medium to a high fraction of initially activated nodes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Stephany Rajeh (9 papers)
  2. Ali Yassin (3 papers)
  3. Ali Jaber (5 papers)
  4. Hocine Cherifi (44 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.