Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable SAT Solving in the Cloud (2205.06590v1)

Published 13 May 2022 in cs.DC and cs.LO

Abstract: Previous efforts on making Satisfiability (SAT) solving fit for high performance computing (HPC) have lead to super-linear speedups on particular formulae, but for most inputs cannot make efficient use of a large number of processors. Moreover, long latencies (minutes to days) of job scheduling make large-scale SAT solving on demand impractical for most applications. We address both issues with Mallob, a framework for job scheduling in the context of SAT solving which exploits malleability, i.e., the ability to add or remove processing power from a job during its computation. Mallob includes a massively parallel, distributed, and malleable SAT solving engine based on Hordesat with a more succinct and communication-efficient approach to clause sharing and numerous further improvements over its precursor. For example, Mallob on 640 cores outperforms an updated and improved configuration of Hordesat on 2560 cores. Moreover, Mallob can also solve many formulae in parallel while dynamically adapting the assigned resources, and jobs arriving in the system are usually initiated within a fraction of a second.

Citations (23)

Summary

We haven't generated a summary for this paper yet.