Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SENS: Semantic Synthetic Benchmarking Model for integrated supply chain simulation and analysis (2205.06484v1)

Published 13 May 2022 in cs.DB

Abstract: Supply Chain (SC) modeling is essential to understand and influence SC behavior, especially for increasingly globalized and complex SCs. Existing models address various SC notions, e.g., processes, tiers and production, in an isolated manner limiting enriched analysis granted by integrated information systems. Moreover, the scarcity of real-world data prevents the benchmarking of the overall SC performance in different circumstances, especially wrt. resilience during disruption. We present SENS, an ontology-based Knowlegde-Graph (KG) equipped with SPARQL implementations of KPIs to incorporate an end-to-end perspective of the SC including standardized SCOR processes and metrics. Further, we propose SENS-GEN, a highly configurable data generator that leverages SENS to create synthetic semantic SC data under multiple scenario configurations for comprehensive analysis and benchmarking applications. The evaluation shows that the significantly improved simulation and analysis capabilities, enabled by SENS, facilitate grasping, controlling and ultimately enhancing SC behavior and increasing resilience in disruptive scenarios.

Citations (1)

Summary

We haven't generated a summary for this paper yet.