Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 24 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 209 tok/s Pro
2000 character limit reached

Phenomenological Theory of Variational Quantum Ground-State Preparation (2205.06278v4)

Published 12 May 2022 in quant-ph, cond-mat.stat-mech, and cond-mat.str-el

Abstract: The variational approach is a cornerstone of computational physics, considering both conventional and quantum computing computational platforms. The variational quantum eigensolver (VQE) algorithm aims to prepare the ground state of a Hamiltonian exploiting parametrized quantum circuits that may offer an advantage compared to classical trial states used, for instance, in quantum Monte Carlo or tensor network calculations. While traditionally, the main focus has been on developing better trial circuits, we show that the algorithm's success crucially depends on other parameters such as the learning rate, the number $N_s$ of measurements to estimate the gradient components, and the Hamiltonian gap $\Delta$. We first observe the existence of a finite $N_s$ value below which the optimization is impossible, and the energy variance resembles the behavior of the specific heat in second-order phase transitions. Secondly, when $N_s$ is above such threshold level, and learning is possible, we develop a phenomenological model that relates the fidelity of the state preparation with the optimization hyperparameters as well as $\Delta$. More specifically, we observe that the computational resources scale as $1/\Delta2$, and we propose a symmetry-enhanced simulation protocol that should be used if the gap closes. We test our understanding on several instances of two-dimensional frustrated quantum magnets, which are believed to be the most promising candidates for near-term quantum advantage through variational quantum simulations.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com