Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge Distillation for Multi-Target Domain Adaptation in Real-Time Person Re-Identification (2205.06237v2)

Published 12 May 2022 in cs.CV

Abstract: Despite the recent success of deep learning architectures, person re-identification (ReID) remains a challenging problem in real-word applications. Several unsupervised single-target domain adaptation (STDA) methods have recently been proposed to limit the decline in ReID accuracy caused by the domain shift that typically occurs between source and target video data. Given the multimodal nature of person ReID data (due to variations across camera viewpoints and capture conditions), training a common CNN backbone to address domain shifts across multiple target domains, can provide an efficient solution for real-time ReID applications. Although multi-target domain adaptation (MTDA) has not been widely addressed in the ReID literature, a straightforward approach consists in blending different target datasets, and performing STDA on the mixture to train a common CNN. However, this approach may lead to poor generalization, especially when blending a growing number of distinct target domains to train a smaller CNN. To alleviate this problem, we introduce a new MTDA method based on knowledge distillation (KD-ReID) that is suitable for real-time person ReID applications. Our method adapts a common lightweight student backbone CNN over the target domains by alternatively distilling from multiple specialized teacher CNNs, each one adapted on data from a specific target domain. Extensive experiments conducted on several challenging person ReID datasets indicate that our approach outperforms state-of-art methods for MTDA, including blending methods, particularly when training a compact CNN backbone like OSNet. Results suggest that our flexible MTDA approach can be employed to design cost-effective ReID systems for real-time video surveillance applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Félix Remigereau (1 paper)
  2. Djebril Mekhazni (3 papers)
  3. Sajjad Abdoli (7 papers)
  4. Le Thanh Nguyen-Meidine (12 papers)
  5. Rafael M. O. Cruz (39 papers)
  6. Eric Granger (121 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.