Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Domain Adaptation in the Dissimilarity Space for Person Re-identification (2007.13890v1)

Published 27 Jul 2020 in cs.CV

Abstract: Person re-identification (ReID) remains a challenging task in many real-word video analytics and surveillance applications, even though state-of-the-art accuracy has improved considerably with the advent of deep learning (DL) models trained on large image datasets. Given the shift in distributions that typically occurs between video data captured from the source and target domains, and absence of labeled data from the target domain, it is difficult to adapt a DL model for accurate recognition of target data. We argue that for pair-wise matchers that rely on metric learning, e.g., Siamese networks for person ReID, the unsupervised domain adaptation (UDA) objective should consist in aligning pair-wise dissimilarity between domains, rather than aligning feature representations. Moreover, dissimilarity representations are more suitable for designing open-set ReID systems, where identities differ in the source and target domains. In this paper, we propose a novel Dissimilarity-based Maximum Mean Discrepancy (D-MMD) loss for aligning pair-wise distances that can be optimized via gradient descent. From a person ReID perspective, the evaluation of D-MMD loss is straightforward since the tracklet information allows to label a distance vector as being either within-class or between-class. This allows approximating the underlying distribution of target pair-wise distances for D-MMD loss optimization, and accordingly align source and target distance distributions. Empirical results with three challenging benchmark datasets show that the proposed D-MMD loss decreases as source and domain distributions become more similar. Extensive experimental evaluation also indicates that UDA methods that rely on the D-MMD loss can significantly outperform baseline and state-of-the-art UDA methods for person ReID without the common requirement for data augmentation and/or complex networks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Djebril Mekhazni (3 papers)
  2. Amran Bhuiyan (9 papers)
  3. George Ekladious (2 papers)
  4. Eric Granger (121 papers)
Citations (89)

Summary

We haven't generated a summary for this paper yet.