Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Collaborative Hyper-parameter Tuning (2205.05272v1)

Published 11 May 2022 in cs.LG, cs.AI, and cs.MA

Abstract: Hyper-parameter Tuning is among the most critical stages in building machine learning solutions. This paper demonstrates how multi-agent systems can be utilized to develop a distributed technique for determining near-optimal values for any arbitrary set of hyper-parameters in a machine learning model. The proposed method employs a distributedly formed hierarchical agent-based architecture for the cooperative searching procedure of tuning hyper-parameter values. The presented generic model is used to develop a guided randomized agent-based tuning technique, and its behavior is investigated in both machine learning and global function optimization applications. According the empirical results, the proposed model outperformed both of its underlying randomized tuning strategies in terms of classification error and function evaluations, notably in higher number of dimensions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.