Higher-form symmetries, anomalous magnetohydrodynamics, and holography (2205.03619v3)
Abstract: In $U(1)$ Abelian gauge theory coupled to fermions, the non-conservation of the axial current due to the chiral anomaly is given by a dynamical operator $F_{\mu\nu} \tilde{F}{\mu\nu}$ constructed from the field-strength tensor. We attempt to describe this physics in a universal manner by casting this operator in terms of the 2-form current for the 1-form symmetry associated with magnetic flux conservation. We construct a holographic dual with this symmetry breaking pattern and study some aspects of finite temperature anomalous magnetohydrodynamics. We explicitly calculate the charge susceptibility and the axial charge relaxation rate as a function of temperature and magnetic field and compare to recent lattice results. At small magnetic fields we find agreement with elementary hydrodynamics weakly coupled to an electrodynamic sector, but we find deviations at larger fields.
- D. G. Figueroa and M. Shaposhnikov, “Anomalous non-conservation of fermion/chiral number in Abelian gauge theories at finite temperature,” JHEP 04 (2018) 26, arXiv:1707.09967 [hep-ph].
- D. G. Figueroa, A. Florio, and M. Shaposhnikov, “Chiral charge dynamics in Abelian gauge theories at finite temperature,” JHEP 10 (2019) 142, arXiv:1904.11892 [hep-th].
- F. R. Klinkhamer and N. S. Manton, “A Saddle Point Solution in the Weinberg-Salam Theory,” Phys. Rev. D 30 (1984) 2212.
- V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, “On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe,” Phys. Lett. B 155 (1985) 36.
- L. D. McLerran, E. Mottola, and M. E. Shaposhnikov, “Sphalerons and Axion Dynamics in High Temperature QCD,” Phys. Rev. D 43 (1991) 2027–2035.
- K. Fukushima, D. E. Kharzeev, and H. J. Warringa, “The Chiral Magnetic Effect,” Phys. Rev. D78 (2008) 074033, arXiv:0808.3382 [hep-ph].
- A. Boyarsky, J. Frohlich, and O. Ruchayskiy, “Magnetohydrodynamics of Chiral Relativistic Fluids,” Phys. Rev. D 92 (2015) 043004, arXiv:1504.04854 [hep-ph].
- M. Joyce and M. E. Shaposhnikov, “Primordial magnetic fields, right-handed electrons, and the Abelian anomaly,” Phys. Rev. Lett. 79 (1997) 1193–1196, arXiv:astro-ph/9703005.
- M. Giovannini and M. E. Shaposhnikov, “Primordial hypermagnetic fields and triangle anomaly,” Phys. Rev. D 57 (1998) 2186–2206, arXiv:hep-ph/9710234.
- K. Kamada and A. J. Long, “Baryogenesis from decaying magnetic helicity,” Phys. Rev. D 94 no. 6, (2016) 063501, arXiv:1606.08891 [astro-ph.CO].
- K. Kamada and A. J. Long, “Evolution of the Baryon Asymmetry through the Electroweak Crossover in the Presence of a Helical Magnetic Field,” Phys. Rev. D 94 no. 12, (2016) 123509, arXiv:1610.03074 [hep-ph].
- K. Landsteiner, “Notes on Anomaly Induced Transport,” Acta Phys. Polon. B47 (2016) 2617, arXiv:1610.04413 [hep-th].
- D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, “Generalized Global Symmetries,” JHEP 02 (2015) 172, arXiv:1412.5148 [hep-th].
- J. McGreevy, “Generalized Symmetries in Condensed Matter,” arXiv:2204.03045 [cond-mat.str-el].
- D. T. Son and P. Surowka, “Hydrodynamics with Triangle Anomalies,” Phys. Rev. Lett. 103 (2009) 191601, arXiv:0906.5044 [hep-th].
- Y. Neiman and Y. Oz, “Relativistic Hydrodynamics with General Anomalous Charges,” JHEP 03 (2011) 023, arXiv:1011.5107 [hep-th].
- S. Grozdanov, D. M. Hofman, and N. Iqbal, “Generalized global symmetries and dissipative magnetohydrodynamics,” Phys. Rev. D95 no. 9, (2017) 096003, arXiv:1610.07392 [hep-th].
- D. M. Hofman and N. Iqbal, “Generalized global symmetries and holography,” SciPost Phys. 4 (2018) 005, arXiv:1707.08577 [hep-th].
- S. Grozdanov and N. Poovuttikul, “Generalised global symmetries in holography: magnetohydrodynamic waves in a strongly interacting plasma,” JHEP 04 (2019) 141, arXiv:1707.04182 [hep-th].
- N. Yamamoto, “Scaling laws in chiral hydrodynamic turbulence,” Phys. Rev. D 93 no. 12, (2016) 125016, arXiv:1603.08864 [hep-th].
- K. Hattori, Y. Hirono, H.-U. Yee, and Y. Yin, “MagnetoHydrodynamics with chiral anomaly: phases of collective excitations and instabilities,” Phys. Rev. D 100 no. 6, (2019) 065023, arXiv:1711.08450 [hep-th].
- Y. Choi, H. T. Lam, and S.-H. Shao, “Non-invertible Global Symmetries in the Standard Model,” arXiv:2205.05086 [hep-th].
- C. Cordova and K. Ohmori, “Non-Invertible Chiral Symmetry and Exponential Hierarchies,” arXiv:2205.06243 [hep-th].
- A. Jimenez-Alba, K. Landsteiner, and L. Melgar, “Anomalous magnetoresponse and the Stückelberg axion in holography,” Phys. Rev. D 90 (2014) 126004, arXiv:1407.8162 [hep-th].
- A. Gynther, K. Landsteiner, F. Pena-Benitez, and A. Rebhan, “Holographic Anomalous Conductivities and the Chiral Magnetic Effect,” JHEP 02 (2011) 110, arXiv:1005.2587 [hep-th].
- A. Jimenez-Alba and L. Melgar, “Anomalous Transport in Holographic Chiral Superfluids via Kubo Formulae,” JHEP 10 (2014) 120, arXiv:1404.2434 [hep-th].
- M. Ammon, S. Grieninger, A. Jimenez-Alba, R. P. Macedo, and L. Melgar, “Holographic quenches and anomalous transport,” JHEP 09 (2016) 131, arXiv:1607.06817 [hep-th].
- S. Grieninger, “Holographic quenches and anomalous transport,” Master’s thesis, Jena U., TPI, 2016.
- E. Witten, “SL(2,Z) action on three-dimensional conformal field theories with Abelian symmetry,” in From Fields to Strings: Circumnavigating Theoretical Physics: A Conference in Tribute to Ian Kogan, pp. 1173–1200. 7, 2003. arXiv:hep-th/0307041.
- U. Gürsoy and A. Jansen, “(Non)renormalization of Anomalous Conductivities and Holography,” JHEP 10 (2014) 092, arXiv:1407.3282 [hep-th].
- A. D. Gallegos and U. Gürsoy, “Dynamical gauge fields and anomalous transport at strong coupling,” JHEP 05 (2019) 001, arXiv:1806.07138 [hep-th].
- O. DeWolfe and K. Higginbotham, “Generalized symmetries and 2-groups via electromagnetic duality in AdS/CFT𝐴𝑑𝑆𝐶𝐹𝑇AdS/CFTitalic_A italic_d italic_S / italic_C italic_F italic_T,” Phys. Rev. D 103 no. 2, (2021) 026011, arXiv:2010.06594 [hep-th].
- N. Iqbal and K. Macfarlane, “Higher-form symmetry breaking and holographic flavour,” arXiv:2107.00373 [hep-th].
- J. Polchinski, String theory. Vol. 2: Superstring theory and beyond. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2007.
- D. S. Berman, Chiral gauge theories and their applications. PhD thesis, Durham University, 1998.
- E. D’Hoker and P. Kraus, “Magnetic Brane Solutions in AdS,” JHEP 10 (2009) 088, arXiv:0908.3875 [hep-th].
- E. D’Hoker and P. Kraus, “Quantum Criticality via Magnetic Branes,” Lect. Notes Phys. 871 (2013) 469–502, arXiv:1208.1925 [hep-th].
- N. Iqbal and H. Liu, “Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm,” Phys. Rev. D79 (2009) 025023, arXiv:0809.3808 [hep-th].
- D. Anninos, S. A. Hartnoll, and N. Iqbal, “Holography and the Coleman-Mermin-Wagner theorem,” Phys. Rev. D 82 (2010) 066008, arXiv:1005.1973 [hep-th].
- S. Caron-Huot and O. Saremi, “Hydrodynamic Long-Time tails From Anti de Sitter Space,” JHEP 11 (2010) 013, arXiv:0909.4525 [hep-th].
- M. Baggioli, Applied Holography: A Practical Mini-Course. SpringerBriefs in Physics. Springer, 2019. arXiv:1908.02667 [hep-th].
- G. T. Horowitz and V. E. Hubeny, “Quasinormal modes of AdS black holes and the approach to thermal equilibrium,” Phys. Rev. D 62 (2000) 024027, arXiv:hep-th/9909056.
- A. O. Starinets, “Quasinormal modes of near extremal black branes,” Phys. Rev. D 66 (2002) 124013, arXiv:hep-th/0207133.
- T. Faulkner and N. Iqbal, “Friedel oscillations and horizon charge in 1D holographic liquids,” JHEP 07 (2013) 060, arXiv:1207.4208 [hep-th].
- K. Jensen, P. Kovtun, and A. Ritz, “Chiral conductivities and effective field theory,” JHEP 10 (2013) 186, arXiv:1307.3234 [hep-th].
- D. E. Kharzeev and H.-U. Yee, “Chiral Magnetic Wave,” Phys. Rev. D 83 (2011) 085007, arXiv:1012.6026 [hep-th].
- T. D. Brennan and C. Cordova, “Axions, higher-groups, and emergent symmetry,” JHEP 02 (2022) 145, arXiv:2011.09600 [hep-th].
- Y. Hidaka, M. Nitta, and R. Yokokura, “Higher-form symmetries and 3-group in axion electrodynamics,” Phys. Lett. B 808 (2020) 135672, arXiv:2006.12532 [hep-th].
- Y. Hidaka, M. Nitta, and R. Yokokura, “Global 3-group symmetry and ’t Hooft anomalies in axion electrodynamics,” JHEP 01 (2021) 173, arXiv:2009.14368 [hep-th].
- A. B. Olde Daalhuis, “Chapter 15 Hypergeometric Function,”. {https://dlmf.nist.gov/15.10}.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.