Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

An Empirical Study on Activity Recognition in Long Surgical Videos (2205.02805v3)

Published 5 May 2022 in cs.CV

Abstract: Activity recognition in surgical videos is a key research area for developing next-generation devices and workflow monitoring systems. Since surgeries are long processes with highly-variable lengths, deep learning models used for surgical videos often consist of a two-stage setup using a backbone and temporal sequence model. In this paper, we investigate many state-of-the-art backbones and temporal models to find architectures that yield the strongest performance for surgical activity recognition. We first benchmark the models performance on a large-scale activity recognition dataset containing over 800 surgery videos captured in multiple clinical operating rooms. We further evaluate the models on the two smaller public datasets, the Cholec80 and Cataract-101 datasets, containing only 80 and 101 videos respectively. We empirically found that Swin-Transformer+BiGRU temporal model yielded strong performance on both datasets. Finally, we investigate the adaptability of the model to new domains by fine-tuning models to a new hospital and experimenting with a recent unsupervised domain adaptation approach.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.