Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantum estimation bound of Gaussian matrix permanent (2205.01328v3)

Published 3 May 2022 in quant-ph, math-ph, math.MP, physics.atom-ph, and physics.comp-ph

Abstract: Exact calculation and even multiplicative error estimation of matrix permanent are challenging for both classical and quantum computers. Regarding the permanents of random Gaussian matrices, the additive error estimation is closely linked to boson sampling, and achieving multiplicative error estimation requires exponentially many samplings. Our newly developed formula for matrix permanents and its corresponding quantum expression have enabled better estimation of the average additive error for random Gaussian matrices compared to Gurvits' classical sampling algorithm. The well-known Ryser formula has been converted into a quantum permanent estimator. When dealing with real random Gaussian square matrices of size $N$, the quantum estimator can approximate the matrix permanent with an additive error smaller than $\epsilon(\sqrt{\mathrm{e}N}){N}$, where $\epsilon$ is the estimation precision. In contrast, Gurvits' classical sampling algorithm has an estimation error of $\epsilon(2\sqrt{N}){N}$, which is exponentially larger ($1.2{N}$) than the quantum method. As expected, the quantum additive error bound fails to reach the multiplicative error bound of $(2\pi N){1/4}\epsilon(\sqrt{N/\mathrm{e}}){N}$. Additionally, the quantum permanent estimator can be up to quadratically faster than the classical estimator when using quantum phase estimation-based amplitude estimation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube