Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Constraint Programming and Graph Representation Learning for Generating Interpretable Cloud Security Policies (2205.01240v4)

Published 2 May 2022 in cs.CR and cs.AI

Abstract: Modern software systems rely on mining insights from business sensitive data stored in public clouds. A data breach usually incurs significant (monetary) loss for a commercial organization. Conceptually, cloud security heavily relies on Identity Access Management (IAM) policies that IT admins need to properly configure and periodically update. Security negligence and human errors often lead to misconfiguring IAM policies which may open a backdoor for attackers. To address these challenges, first, we develop a novel framework that encodes generating optimal IAM policies using constraint programming (CP). We identify reducing dark permissions of cloud users as an optimality criterion, which intuitively implies minimizing unnecessary datastore access permissions. Second, to make IAM policies interpretable, we use graph representation learning applied to historical access patterns of users to augment our CP model with similarity constraints: similar users should be grouped together and share common IAM policies. Third, we describe multiple attack models and show that our optimized IAM policies significantly reduce the impact of security attacks using real data from 8 commercial organizations, and synthetic instances.

Citations (3)

Summary

We haven't generated a summary for this paper yet.