Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leximax Approximations and Representative Cohort Selection (2205.01157v2)

Published 2 May 2022 in cs.DS and cs.CY

Abstract: Finding a representative cohort from a broad pool of candidates is a goal that arises in many contexts such as choosing governing committees and consumer panels. While there are many ways to define the degree to which a cohort represents a population, a very appealing solution concept is lexicographic maximality (leximax) which offers a natural (pareto-optimal like) interpretation that the utility of no population can be increased without decreasing the utility of a population that is already worse off. However, finding a leximax solution can be highly dependent on small variations in the utility of certain groups. In this work, we explore new notions of approximate leximax solutions with three distinct motivations: better algorithmic efficiency, exploiting significant utility improvements, and robustness to noise. Among other definitional contributions, we give a new notion of an approximate leximax that satisfies a similarly appealing semantic interpretation and relate it to algorithmically-feasible approximate leximax notions. When group utilities are linear over cohort candidates, we give an efficient polynomial-time algorithm for finding a leximax distribution over cohort candidates in the exact as well as in the approximate setting. Furthermore, we show that finding an integer solution to leximax cohort selection with linear utilities is NP-Hard.

Citations (6)

Summary

We haven't generated a summary for this paper yet.