Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Core for Committee Selection via Multilinear Extension and Market Clearing (2110.12499v1)

Published 24 Oct 2021 in cs.GT, cs.DS, and econ.TH

Abstract: Motivated by civic problems such as participatory budgeting and multiwinner elections, we consider the problem of public good allocation: Given a set of indivisible projects (or candidates) of different sizes, and voters with different monotone utility functions over subsets of these candidates, the goal is to choose a budget-constrained subset of these candidates (or a committee) that provides fair utility to the voters. The notion of fairness we adopt is that of core stability from cooperative game theory: No subset of voters should be able to choose another blocking committee of proportionally smaller size that provides strictly larger utility to all voters that deviate. The core provides a strong notion of fairness, subsuming other notions that have been widely studied in computational social choice. It is well-known that an exact core need not exist even when utility functions of the voters are additive across candidates. We therefore relax the problem to allow approximation: Voters can only deviate to the blocking committee if after they choose any extra candidate (called an additament), their utility still increases by an $\alpha$ factor. If no blocking committee exists under this definition, we call this an $\alpha$-core. Our main result is that an $\alpha$-core, for $\alpha < 67.37$, always exists when utilities of the voters are arbitrary monotone submodular functions, and this can be computed in polynomial time. This result improves to $\alpha < 9.27$ for additive utilities, albeit without the polynomial time guarantee. Our results are a significant improvement over prior work that only shows logarithmic approximations for the case of additive utilities. We complement our results with a lower bound of $\alpha > 1.015$ for submodular utilities, and a lower bound of any function in the number of voters and candidates for general monotone utilities.

Citations (18)

Summary

We haven't generated a summary for this paper yet.