Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Statistical inference for the two-sample problem under likelihood ratio ordering, with application to the ROC curve estimation (2205.00505v2)

Published 1 May 2022 in stat.ME

Abstract: The receiver operating characteristic (ROC) curve is a powerful statistical tool and has been widely applied in medical research. In the ROC curve estimation, a commonly used assumption is that larger the biomarker value, greater severity the disease. In this paper, we mathematically interpret greater severity of the disease" aslarger probability of being diseased". This in turn is equivalent to assume the likelihood ratio ordering of the biomarker between the diseased and healthy individuals. With this assumption, we first propose a Bernstein polynomial method to model the distributions of both samples; we then estimate the distributions by the maximum empirical likelihood principle. The ROC curve estimate and the associated summary statistics are obtained subsequently. Theoretically, we establish the asymptotic consistency of our estimators. Via extensive numerical studies, we compare the performance of our method with competitive methods. The application of our method is illustrated by a real-data example.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube