Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CUP: Curriculum Learning based Prompt Tuning for Implicit Event Argument Extraction (2205.00498v2)

Published 1 May 2022 in cs.CL

Abstract: Implicit event argument extraction (EAE) aims to identify arguments that could scatter over the document. Most previous work focuses on learning the direct relations between arguments and the given trigger, while the implicit relations with long-range dependency are not well studied. Moreover, recent neural network based approaches rely on a large amount of labeled data for training, which is unavailable due to the high labelling cost. In this paper, we propose a Curriculum learning based Prompt tuning (CUP) approach, which resolves implicit EAE by four learning stages. The stages are defined according to the relations with the trigger node in a semantic graph, which well captures the long-range dependency between arguments and the trigger. In addition, we integrate a prompt-based encoder-decoder model to elicit related knowledge from pre-trained LLMs (PLMs) in each stage, where the prompt templates are adapted with the learning progress to enhance the reasoning for arguments. Experimental results on two well-known benchmark datasets show the great advantages of our proposed approach. In particular, we outperform the state-of-the-art models in both fully-supervised and low-data scenarios.

Citations (16)

Summary

We haven't generated a summary for this paper yet.