Internal sums for synthetic fibered $(\infty,1)$-categories (2205.00386v3)
Abstract: We give structural results about bifibrations of (internal) $(\infty,1)$-categories with internal sums. This includes a higher version of Moens' Theorem, characterizing cartesian bifibrations with extensive aka stable and disjoint internal sums over lex bases as Artin gluings of lex functors. We also treat a generalized version of Moens' Theorem due to Streicher which does not require the Beck--Chevalley condition. Furthermore, we show that also in this setting the Moens fibrations can be characterized via a condition due to Zawadowski. Our account overall follows Streicher's presentation of fibered category theory `{a} la B\'{e}nabou, generalizing the results to the internal, higher-categorical case, formulated in a synthetic setting. Namely, we work inside simplicial homotopy type theory, which has been introduced by Riehl and Shulman as a logical system to reason about internal $(\infty,1)$-categories, interpreted as Rezk objects in any given Grothendieck--Rezk--Lurie $(\infty,1)$-topos.
- “Two-Level Type Theory and Applications”, 2019 arXiv: https://arxiv.org/abs/1705.03307
- Steve Awodey “Type theory and homotopy” arXiv, 2010 DOI: 10.48550/ARXIV.1010.1810
- Steve Awodey and Michael A. Warren “Homotopy theoretic models of identity types” In Mathematical Proceedings of the Cambridge Philosophical Society 146.1 Cambridge University Press, 2009, pp. 45–55 DOI: 10.1017/S0305004108001783
- “Fibrations of ∞\infty∞-categories” In Higher Structures 4.1, 2020 URL: http://journals.mq.edu.au/index.php/higher_structures/article/view/29
- “Parametrized higher category theory and higher algebra: Exposé I – Elements of parametrized higher category theory”, 2016 arXiv: https://arxiv.org/abs/1608.03657
- “Fibrations in ∞\infty∞-category theory” In 2016 MATRIX annals Cham: Springer, 2018, pp. 17–42 DOI: 10.1007/978-3-319-72299-3_2
- Jean Bénabou “Des Catégories Fibrées” Lecture Notes by J.-R. Roisin of a Course by J. Bénabou at Univ. Louvain-la-Neuve, 1980
- Jean Bénabou “Fibered categories and the foundations of naive category theory” In J. Symb. Log. 50, 1985, pp. 10–37 DOI: 10.2307/2273784
- Jean Bénabou “Logique Catégorique” Lecture Notes of a Course by J. Bénabou in Montreal, 1974
- Pedro Boavida de Brito “Segal objects and the Grothendieck construction” In An alpine bouquet of algebraic topology 708, Contemp. Math. Amer. Math. Soc., [Providence], RI, 2018, pp. 19–44 DOI: 10.1090/conm/708/14271
- Francis Borceux “Handbook of Categorical Algebra: Volume 2, Categories and Structures” Cambridge University Press, 1994
- Ulrik Buchholtz “Higher Structures in Homotopy Type Theory” In Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts Cham: Springer International Publishing, 2019, pp. 151–172 DOI: 10.1007/978-3-030-15655-8_7
- “Synthetic fibered (∞,1)1(\infty,1)( ∞ , 1 )-category theory” In Higher Structures 7, 2023, pp. 74–165 DOI: 10.21136/HS.2023.04
- Paolo Capriotti “Models of Type Theory with Strict Equality”, 2016 URL: http://arxiv.org/abs/1702.04912
- Aurelio Carboni, Stephen Lack and R.F.C. Walters “Introduction to extensive and distributive categories” In J. Pure Appl. Algebra 84.2, 1993, pp. 145–158 DOI: 10.1016/0022-4049(93)90035-R
- Evan Cavallo, Emily Riehl and Christian Sattler “On the directed univalence axiom” Talk at AMS Special Session on Homotopy Type Theory, Joint Mathematics Meething, San Diego, 2018 URL: http://www.math.jhu.edu/~eriehl/JMM2018-directed-univalence.pdf
- Denis-Charles Cisinski “Higher Categories and Homotopical Algebra”, Cambridge Studies in Advanced Mathematics Cambridge University Press, 2019 DOI: 10.1017/9781108588737
- Joël André Doat “Reyes’ Topos of Reference and Modality from a fibrational Perspective”, 2021, pp. 54 Seiten DOI: https://doi.org/10.26083/tuprints-00019501
- “Triposes as a Generalization of Localic Geometric Morphisms” To appear in Math Struct Comp Sci arXiv, 2020 DOI: 10.48550/ARXIV.2005.06019
- Jonas Frey “A fibrational study of realizability toposes”, 2014 URL: https://arxiv.org/pdf/1403.3672.pdf
- Jonas Frey “Moens’ theorem and fibered toposes” Presentation at ScoCats 9, 2014 URL: https://github.com/jonas-frey/pdfs/blob/master/scotcats-glasgow-june-2014-slides.pdf
- David Gepner, Rune Haugseng and Thomas Nikolaus “Lax Colimits and Free Fibrations in ∞\infty∞-Categories” In Doc. Math. 22, 2017, pp. 1225–1266 DOI: 10.25537/dm.2017v22.1225-1266
- John W. Gray “Fibred and Cofibred Categories” In Proceedings of the Conference on Categorical Algebra Berlin, Heidelberg: Springer Berlin Heidelberg, 1966, pp. 21–83 DOI: https://doi.org/10.1007/978-3-642-99902-4_2
- Daniel Grayson “An introduction to univalent foundations for mathematicians” In Bulletin of the American Mathematical Society 55.4 American Mathematical Society (AMS), 2018, pp. 427–450 DOI: 10.1090/bull/1616
- “Ambidexterity” In Topology and field theories. Center for Mathematics at Notre Dame. Summer school and conference, University of Notre Dame, Notre Dame, IN, USA, May 29 – June 8, 2012 Providence, RI: American Mathematical Society (AMS), 2014, pp. 79–110 DOI: 10.1090/conm/613/12236
- “Ambidexterity in K(n)𝐾𝑛{K}(n)italic_K ( italic_n )-local stable homotopy theory” In preprint, 2013 URL: https://people.math.harvard.edu/~lurie/papers/Ambidexterity.pdf
- Bart Jacobs “Categorical Logic and Type Theory” 141, Studies in Logic and the Foundations of Mathematics North Holland: Elsevier, 1999
- M Jibladze “Geometric morphisms and indexed toposes” In Categorical Topology and its Relation to Analysis, Algebra and Combinatorics (Prague, 1988), World Scientific Publications, 1989, pp. 10–18
- Peter T. Johnstone “Sketches of an Elephant: A Topos Theory Compendium: Volume 2” Oxford, England: Oxford University Press UK, 2002
- André Joyal “Quasi-categories and Kan complexes” Special volume celebrating the 70th birthday of Professor Max Kelly In J. Pure Appl. Algebra 175.1-3, 2002, pp. 207–222 DOI: 10.1016/S0022-4049(02)00135-4
- “Quasi-categories vs Segal spaces” In Contemporary Mathematics 431.277-326 Providence, RI: American Mathematical Society, 2007, pp. 10
- Joyal’s CatLab “Factorisation systems”, May 1, 2022, 7:06 PM Eastern URL: http://128.2.67.219/joyalscatlab/show/Factorisation+systems
- Alex Kavvos “A Quantum of Direction” preprint, 2019 URL: https://www.lambdabetaeta.eu/papers/meio.pdf
- “Yoneda lemma for complete Segal spaces” In Funct. Anal. Its Appl. 48, 2014, pp. 81–106 DOI: 10.1007/s10688-014-0050-3
- Nikolai Kudasov “Rzk” An experimental proof assistant based on a type theory for synthetic ∞\infty∞-categories URL: https://github.com/rzk-lang/rzk
- Daniel R. Licata and Robert Harper “2-dimensional directed type theory” In Twenty-Seventh Conference on the Mathematical Foundations of Programming Semantics (MFPS XXVII) 276, Electron. Notes Theor. Comput. Sci. Elsevier Sci. B. V., Amsterdam, 2011, pp. 263–289 DOI: 10.1016/j.entcs.2011.09.026
- Peter Lietz “A Fibrational Theory of Geometric Morphisms”, 1998 URL: https://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/Lietz_Dipl_1998.ps.gz
- Jacob Lurie “(∞,2)2(\infty,2)( ∞ , 2 )-Categories and the Goodwillie Calculus I” In arXiv preprint arXiv:0905.0462, 2009 URL: https://arxiv.org/abs/0905.0462
- Jacob Lurie “Higher Topos Theory”, Annals of Mathematics Studies 170 Princeton University Press, 2009 arXiv:math/0608040
- César Bardomiano Martínez “Limits and exponentiable functors in simplicial homotopy type theory”, 2022 arXiv: https://arxiv.org/abs/2202.12386
- Louis Martini “Cocartesian fibrations and straightening internal to an ∞\infty∞-topos” arXiv, 2022 DOI: 10.48550/ARXIV.2204.00295
- Louis Martini “Yoneda’s lemma for internal higher categoriess”, 2021 arXiv: https://arxiv.org/abs/2103.17141
- “Internal higher topos theory”, 2023 arXiv: https://arxiv.org/abs/2303.06437
- “Limits and colimits in internal higher category theory”, 2022 arXiv: https://arxiv.org/abs/2111.14495
- Aaron Mazel-Gee “A user’s guide to co/cartesian fibrations” arXiv, 2015 DOI: 10.48550/ARXIV.1510.02402
- Jean-Luc Moens “Caracterisation des topos de faisceaux sur un site interne à un topos”, 1982
- David Jaz Myers “Cartesian Factorization Systems and Grothendieck Fibrations” arXiv, 2020 DOI: 10.48550/ARXIV.2006.14022
- Hoang Kim Nguyen “Theorems in Higher Category Theory and Applications”, 2019 URL: https://epub.uni-regensburg.de/38448/
- nLab “orthogonal factorization system”, May 1, 2022, 7:04 PM Eastern URL: https://ncatlab.org/nlab/show/orthogonal+factorization+system
- nLab “weak factorization system”, May 1, 2022, 7:18 PM Eastern URL: https://ncatlab.org/nlab/show/weak+factorization+system
- Paige Randall North “Towards a Directed Homotopy Type Theory” Proceedings of the Thirty-Fifth Conference on the Mathematical Foundations of Programming Semantics In Electronic Notes in Theoretical Computer Science 347, 2019, pp. 223–239 DOI: https://doi.org/10.1016/j.entcs.2019.09.012
- Andreas Nuyts “Towards a Directed Homotopy Type Theory based on 4 Kinds of Variance”, 2015 URL: https://anuyts.github.io/files/mathesis.pdf
- Nima Rasekh “A Theory of Elementary Higher Toposes” arXiv:1805.03805, 2022 arXiv:1805.03805
- Nima Rasekh “Cartesian fibrations and representability” In Homology, Homotopy and Applications 24.2 International Press of Boston, 2022, pp. 135–161
- Nima Rasekh “Cartesian Fibrations of Complete Segal Spaces” In Higher Structures 7, 2023, pp. 40–73 DOI: https://articles.math.cas.cz/10.21136/HS.2023.03
- Nima Rasekh “Univalence in Higher Category Theory” arXiv, 2021 DOI: 10.48550/ARXIV.2103.12762
- Nima Rasekh “Yoneda Lemma for 𝒟𝒟\mathcal{D}caligraphic_D-Simplicial Spaces”, 2021 arXiv:2108.06168
- Charles Rezk “A model for the homotopy theory of homotopy theory” In Trans. Amer. Math. Soc. 353.3, 2001, pp. 973–1007 DOI: 10.1090/S0002-9947-00-02653-2
- Charles Rezk “Stuff about quasicategories”, 2017 URL: https://faculty.math.illinois.edu/~rezk/quasicats.pdf
- Emily Riehl “Math 721: Homotopy type theory” Course notes, 2021 URL: https://github.com/emilyriehl/721/blob/master/721lectures.pdf
- Emily Riehl “On the ∞\infty∞-topos semantics of homotopy type theory” Lecture notes from CIRM Luminy, Logic and Higher Structures workshop. https://emilyriehl.github.io/files/semantics.pdf, 2022
- “A type theory for synthetic ∞\infty∞-categories” In Higher Structures 1.1, 2017, pp. 147–224 URL: https://higher-structures.math.cas.cz/api/files/issues/Vol1Iss1/RiehlShulman
- “Cartesian exponentiation and monadicity”, 2021 arXiv: https://arxiv.org/abs/2101.09853
- “Elements of ∞\infty∞-Category Theory”, Cambridge Studies in Advanced Mathematics Cambridge University Press, 2022 URL: https://emilyriehl.github.io/files/elements.pdf
- “Fibrations and Yoneda’s lemma in an ∞\infty∞-cosmos” In J. Pure Appl. Algebra 221.3, 2017, pp. 499–564 DOI: 10.1016/j.jpaa.2016.07.003
- “Infinity category theory from scratch” In Higher Structures 4.1, 2020 URL: https://higher-structures.math.cas.cz/api/files/issues/Vol4Iss1/RiehlVerity
- Egbert Rijke “Introduction to Homotopy Type Theory”, 2020 URL: https://github.com/EgbertRijke/HoTT-Intro
- Michael Shulman “All (∞,1)1(\infty,1)( ∞ , 1 )-toposes have strict univalent universes”, 2019 arXiv: https://arxiv.org/abs/1904.07004
- Michael Shulman “Elementary (∞,1)1(\infty,1)( ∞ , 1 )-Topoi” n𝑛nitalic_n-Category Café blog post. https://golem.ph.utexas.edu/category/2017/04/elementary_1topoi.html, 2017
- Michael Shulman “Homotopy type theory: the logic of space” In New spaces in mathematics. Formal and conceptual reflections Cambridge: Cambridge University Press, 2021, pp. 322–403
- Raffael Stenzel “(∞,1)1(\infty,1)( ∞ , 1 )-Categorical Comprehension Schemes” arXiv, 2020 DOI: 10.48550/ARXIV.2010.09663
- Raffael Stenzel “Higher geometric sheaf theories”, 2022 arXiv: https://arxiv.org/abs/2205.08646
- Raffael Stenzel “Notions of (∞,1)1(\infty,1)( ∞ , 1 )-sites and related formal structures”, 2023 arXiv: https://arxiv.org/abs/2306.06619
- Raffael Stenzel “The (∞,2)2(\infty,2)( ∞ , 2 )-category of internal (∞,1)1(\infty,1)( ∞ , 1 )-categories”, 2024 arXiv: https://arxiv.org/abs/2402.01396
- Raffael Stenzel “Univalence and completeness of Segal objects” arXiv, 2019 DOI: 10.48550/ARXIV.1911.06640
- “Foundations of Relative Category Theory”, 2022 URL: https://www.jonmsterling.com/math/lectures/categorical-foundations.html
- Ross Street “Correction to: “Fibrations in bicategories” [Cahiers Topologie Géom. Différentielle 21 (1980), no. 2, 111–160; MR0574662 (81f:18028)]” In Cahiers Topologie Géom. Différentielle Catég. 28.1, 1987, pp. 53–56
- Ross Street “Fibrations and Yoneda’s lemma in a 2222-category” In Category Seminar (Proc. Sem., Sydney, 1972/1973), 1974, pp. 104–133. Lecture Notes in Math.\bibrangessepVol. 420 DOI: 10.1007/BFb0063102
- Ross Street “Fibrations in bicategories” In Cahiers Topologie Géom. Différentielle 21.2, 1980, pp. 111–160 URL: http://www.numdam.org/article/CTGDC_1980__21_2_111_0.pdf
- Thomas Streicher “A Fibrational View of Geometric Morphisms” Unpublished note, http://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/ftgm.pdf, 1997
- Thomas Streicher “A model of type theory in simplicial sets: A brief introduction to Voevodsky’s homotopy type theory” In J. Appl. Log. 12.1, 2014, pp. 45–49 DOI: 10.1016/j.jal.2013.04.001
- Thomas Streicher “Fibered Categories à la Jean Bénabou”, 2022 arXiv: https://arxiv.org/abs/1801.02927
- Thomas Streicher “The World’s Simplest Proof of Moens’s Lemma” URL: https://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/SimplMoens.pdf
- Thomas Streicher “Zawadowski’s Cartesian Bifibrations”, 2010 URL: https://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/cartbifib.pdf
- The Univalent Foundations Program “Homotopy Type Theory: Univalent Foundations of Mathematics” Institute for Advanced Study: https://homotopytypetheory.org/book, 2013
- Vladimir Voevodsky “A simple type system with two identity types” Unpublished note. https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf, 2013
- Michael Warren “Directed Type Theory” Lecture at IAS, Princeton, 2013 URL: https://www.youtube.com/watch?v=znn6xEZUKNE
- Matthew Z. Weaver and Daniel R. Licata “A Constructive Model of Directed Univalence in Bicubical Sets” In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’20 Saarbrücken, Germany: Association for Computing Machinery, 2020, pp. 915–928 DOI: 10.1145/3373718.3394794
- Jonathan Weinberger “A Synthetic Perspective on (∞,1)1(\infty,1)( ∞ , 1 )-Category Theory: Fibrational and Semantic Aspects”, 2022, pp. xxi+177 DOI: https://doi.org/10.26083/tuprints-00020716
- Jonathan Weinberger “Strict stability of extension types” arXiv, 2022 DOI: 10.48550/ARXIV.2203.07194
- Jonathan Weinberger “Two-sided cartesian fibrations of synthetic (∞,1)1(\infty,1)( ∞ , 1 )-categories”, 2022 arXiv: https://arxiv.org/abs/2204.00938
- Marek Zawadowski “Lax monoidal fibrations” In Models, logics, and higher-dimensional categories: A tribute to the work of Mihály Makkai. Proceedings of a conference, CRM, Montréal, Canada, June 18–20, 2009 Providence, RI: American Mathematical Society (AMS), 2011, pp. 341–426