Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Internal sums for synthetic fibered $(\infty,1)$-categories (2205.00386v3)

Published 1 May 2022 in math.CT, cs.LO, math.AT, and math.LO

Abstract: We give structural results about bifibrations of (internal) $(\infty,1)$-categories with internal sums. This includes a higher version of Moens' Theorem, characterizing cartesian bifibrations with extensive aka stable and disjoint internal sums over lex bases as Artin gluings of lex functors. We also treat a generalized version of Moens' Theorem due to Streicher which does not require the Beck--Chevalley condition. Furthermore, we show that also in this setting the Moens fibrations can be characterized via a condition due to Zawadowski. Our account overall follows Streicher's presentation of fibered category theory `{a} la B\'{e}nabou, generalizing the results to the internal, higher-categorical case, formulated in a synthetic setting. Namely, we work inside simplicial homotopy type theory, which has been introduced by Riehl and Shulman as a logical system to reason about internal $(\infty,1)$-categories, interpreted as Rezk objects in any given Grothendieck--Rezk--Lurie $(\infty,1)$-topos.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (92)
  1. “Two-Level Type Theory and Applications”, 2019 arXiv: https://arxiv.org/abs/1705.03307
  2. Steve Awodey “Type theory and homotopy” arXiv, 2010 DOI: 10.48550/ARXIV.1010.1810
  3. Steve Awodey and Michael A. Warren “Homotopy theoretic models of identity types” In Mathematical Proceedings of the Cambridge Philosophical Society 146.1 Cambridge University Press, 2009, pp. 45–55 DOI: 10.1017/S0305004108001783
  4. “Fibrations of ∞\infty∞-categories” In Higher Structures 4.1, 2020 URL: http://journals.mq.edu.au/index.php/higher_structures/article/view/29
  5. “Parametrized higher category theory and higher algebra: Exposé I – Elements of parametrized higher category theory”, 2016 arXiv: https://arxiv.org/abs/1608.03657
  6. “Fibrations in ∞\infty∞-category theory” In 2016 MATRIX annals Cham: Springer, 2018, pp. 17–42 DOI: 10.1007/978-3-319-72299-3_2
  7. Jean Bénabou “Des Catégories Fibrées” Lecture Notes by J.-R. Roisin of a Course by J. Bénabou at Univ. Louvain-la-Neuve, 1980
  8. Jean Bénabou “Fibered categories and the foundations of naive category theory” In J. Symb. Log. 50, 1985, pp. 10–37 DOI: 10.2307/2273784
  9. Jean Bénabou “Logique Catégorique” Lecture Notes of a Course by J. Bénabou in Montreal, 1974
  10. Pedro Boavida de Brito “Segal objects and the Grothendieck construction” In An alpine bouquet of algebraic topology 708, Contemp. Math. Amer. Math. Soc., [Providence], RI, 2018, pp. 19–44 DOI: 10.1090/conm/708/14271
  11. Francis Borceux “Handbook of Categorical Algebra: Volume 2, Categories and Structures” Cambridge University Press, 1994
  12. Ulrik Buchholtz “Higher Structures in Homotopy Type Theory” In Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts Cham: Springer International Publishing, 2019, pp. 151–172 DOI: 10.1007/978-3-030-15655-8_7
  13. “Synthetic fibered (∞,1)1(\infty,1)( ∞ , 1 )-category theory” In Higher Structures 7, 2023, pp. 74–165 DOI: 10.21136/HS.2023.04
  14. Paolo Capriotti “Models of Type Theory with Strict Equality”, 2016 URL: http://arxiv.org/abs/1702.04912
  15. Aurelio Carboni, Stephen Lack and R.F.C. Walters “Introduction to extensive and distributive categories” In J. Pure Appl. Algebra 84.2, 1993, pp. 145–158 DOI: 10.1016/0022-4049(93)90035-R
  16. Evan Cavallo, Emily Riehl and Christian Sattler “On the directed univalence axiom” Talk at AMS Special Session on Homotopy Type Theory, Joint Mathematics Meething, San Diego, 2018 URL: http://www.math.jhu.edu/~eriehl/JMM2018-directed-univalence.pdf
  17. Denis-Charles Cisinski “Higher Categories and Homotopical Algebra”, Cambridge Studies in Advanced Mathematics Cambridge University Press, 2019 DOI: 10.1017/9781108588737
  18. Joël André Doat “Reyes’ Topos of Reference and Modality from a fibrational Perspective”, 2021, pp. 54 Seiten DOI: https://doi.org/10.26083/tuprints-00019501
  19. “Triposes as a Generalization of Localic Geometric Morphisms” To appear in Math Struct Comp Sci arXiv, 2020 DOI: 10.48550/ARXIV.2005.06019
  20. Jonas Frey “A fibrational study of realizability toposes”, 2014 URL: https://arxiv.org/pdf/1403.3672.pdf
  21. Jonas Frey “Moens’ theorem and fibered toposes” Presentation at ScoCats 9, 2014 URL: https://github.com/jonas-frey/pdfs/blob/master/scotcats-glasgow-june-2014-slides.pdf
  22. David Gepner, Rune Haugseng and Thomas Nikolaus “Lax Colimits and Free Fibrations in ∞\infty∞-Categories” In Doc. Math. 22, 2017, pp. 1225–1266 DOI: 10.25537/dm.2017v22.1225-1266
  23. John W. Gray “Fibred and Cofibred Categories” In Proceedings of the Conference on Categorical Algebra Berlin, Heidelberg: Springer Berlin Heidelberg, 1966, pp. 21–83 DOI: https://doi.org/10.1007/978-3-642-99902-4_2
  24. Daniel Grayson “An introduction to univalent foundations for mathematicians” In Bulletin of the American Mathematical Society 55.4 American Mathematical Society (AMS), 2018, pp. 427–450 DOI: 10.1090/bull/1616
  25. “Ambidexterity” In Topology and field theories. Center for Mathematics at Notre Dame. Summer school and conference, University of Notre Dame, Notre Dame, IN, USA, May 29 – June 8, 2012 Providence, RI: American Mathematical Society (AMS), 2014, pp. 79–110 DOI: 10.1090/conm/613/12236
  26. “Ambidexterity in K⁢(n)𝐾𝑛{K}(n)italic_K ( italic_n )-local stable homotopy theory” In preprint, 2013 URL: https://people.math.harvard.edu/~lurie/papers/Ambidexterity.pdf
  27. Bart Jacobs “Categorical Logic and Type Theory” 141, Studies in Logic and the Foundations of Mathematics North Holland: Elsevier, 1999
  28. M Jibladze “Geometric morphisms and indexed toposes” In Categorical Topology and its Relation to Analysis, Algebra and Combinatorics (Prague, 1988), World Scientific Publications, 1989, pp. 10–18
  29. Peter T. Johnstone “Sketches of an Elephant: A Topos Theory Compendium: Volume 2” Oxford, England: Oxford University Press UK, 2002
  30. André Joyal “Quasi-categories and Kan complexes” Special volume celebrating the 70th birthday of Professor Max Kelly In J. Pure Appl. Algebra 175.1-3, 2002, pp. 207–222 DOI: 10.1016/S0022-4049(02)00135-4
  31. “Quasi-categories vs Segal spaces” In Contemporary Mathematics 431.277-326 Providence, RI: American Mathematical Society, 2007, pp. 10
  32. Joyal’s CatLab “Factorisation systems”, May 1, 2022, 7:06 PM Eastern URL: http://128.2.67.219/joyalscatlab/show/Factorisation+systems
  33. Alex Kavvos “A Quantum of Direction” preprint, 2019 URL: https://www.lambdabetaeta.eu/papers/meio.pdf
  34. “Yoneda lemma for complete Segal spaces” In Funct. Anal. Its Appl. 48, 2014, pp. 81–106 DOI: 10.1007/s10688-014-0050-3
  35. Nikolai Kudasov “Rzk” An experimental proof assistant based on a type theory for synthetic ∞\infty∞-categories URL: https://github.com/rzk-lang/rzk
  36. Daniel R. Licata and Robert Harper “2-dimensional directed type theory” In Twenty-Seventh Conference on the Mathematical Foundations of Programming Semantics (MFPS XXVII) 276, Electron. Notes Theor. Comput. Sci. Elsevier Sci. B. V., Amsterdam, 2011, pp. 263–289 DOI: 10.1016/j.entcs.2011.09.026
  37. Peter Lietz “A Fibrational Theory of Geometric Morphisms”, 1998 URL: https://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/Lietz_Dipl_1998.ps.gz
  38. Jacob Lurie “(∞,2)2(\infty,2)( ∞ , 2 )-Categories and the Goodwillie Calculus I” In arXiv preprint arXiv:0905.0462, 2009 URL: https://arxiv.org/abs/0905.0462
  39. Jacob Lurie “Higher Topos Theory”, Annals of Mathematics Studies 170 Princeton University Press, 2009 arXiv:math/0608040
  40. César Bardomiano Martínez “Limits and exponentiable functors in simplicial homotopy type theory”, 2022 arXiv: https://arxiv.org/abs/2202.12386
  41. Louis Martini “Cocartesian fibrations and straightening internal to an ∞\infty∞-topos” arXiv, 2022 DOI: 10.48550/ARXIV.2204.00295
  42. Louis Martini “Yoneda’s lemma for internal higher categoriess”, 2021 arXiv: https://arxiv.org/abs/2103.17141
  43. “Internal higher topos theory”, 2023 arXiv: https://arxiv.org/abs/2303.06437
  44. “Limits and colimits in internal higher category theory”, 2022 arXiv: https://arxiv.org/abs/2111.14495
  45. Aaron Mazel-Gee “A user’s guide to co/cartesian fibrations” arXiv, 2015 DOI: 10.48550/ARXIV.1510.02402
  46. Jean-Luc Moens “Caracterisation des topos de faisceaux sur un site interne à un topos”, 1982
  47. David Jaz Myers “Cartesian Factorization Systems and Grothendieck Fibrations” arXiv, 2020 DOI: 10.48550/ARXIV.2006.14022
  48. Hoang Kim Nguyen “Theorems in Higher Category Theory and Applications”, 2019 URL: https://epub.uni-regensburg.de/38448/
  49. nLab “orthogonal factorization system”, May 1, 2022, 7:04 PM Eastern URL: https://ncatlab.org/nlab/show/orthogonal+factorization+system
  50. nLab “weak factorization system”, May 1, 2022, 7:18 PM Eastern URL: https://ncatlab.org/nlab/show/weak+factorization+system
  51. Paige Randall North “Towards a Directed Homotopy Type Theory” Proceedings of the Thirty-Fifth Conference on the Mathematical Foundations of Programming Semantics In Electronic Notes in Theoretical Computer Science 347, 2019, pp. 223–239 DOI: https://doi.org/10.1016/j.entcs.2019.09.012
  52. Andreas Nuyts “Towards a Directed Homotopy Type Theory based on 4 Kinds of Variance”, 2015 URL: https://anuyts.github.io/files/mathesis.pdf
  53. Nima Rasekh “A Theory of Elementary Higher Toposes” arXiv:1805.03805, 2022 arXiv:1805.03805
  54. Nima Rasekh “Cartesian fibrations and representability” In Homology, Homotopy and Applications 24.2 International Press of Boston, 2022, pp. 135–161
  55. Nima Rasekh “Cartesian Fibrations of Complete Segal Spaces” In Higher Structures 7, 2023, pp. 40–73 DOI: https://articles.math.cas.cz/10.21136/HS.2023.03
  56. Nima Rasekh “Univalence in Higher Category Theory” arXiv, 2021 DOI: 10.48550/ARXIV.2103.12762
  57. Nima Rasekh “Yoneda Lemma for 𝒟𝒟\mathcal{D}caligraphic_D-Simplicial Spaces”, 2021 arXiv:2108.06168
  58. Charles Rezk “A model for the homotopy theory of homotopy theory” In Trans. Amer. Math. Soc. 353.3, 2001, pp. 973–1007 DOI: 10.1090/S0002-9947-00-02653-2
  59. Charles Rezk “Stuff about quasicategories”, 2017 URL: https://faculty.math.illinois.edu/~rezk/quasicats.pdf
  60. Emily Riehl “Math 721: Homotopy type theory” Course notes, 2021 URL: https://github.com/emilyriehl/721/blob/master/721lectures.pdf
  61. Emily Riehl “On the ∞\infty∞-topos semantics of homotopy type theory” Lecture notes from CIRM Luminy, Logic and Higher Structures workshop. https://emilyriehl.github.io/files/semantics.pdf, 2022
  62. “A type theory for synthetic ∞\infty∞-categories” In Higher Structures 1.1, 2017, pp. 147–224 URL: https://higher-structures.math.cas.cz/api/files/issues/Vol1Iss1/RiehlShulman
  63. “Cartesian exponentiation and monadicity”, 2021 arXiv: https://arxiv.org/abs/2101.09853
  64. “Elements of ∞\infty∞-Category Theory”, Cambridge Studies in Advanced Mathematics Cambridge University Press, 2022 URL: https://emilyriehl.github.io/files/elements.pdf
  65. “Fibrations and Yoneda’s lemma in an ∞\infty∞-cosmos” In J. Pure Appl. Algebra 221.3, 2017, pp. 499–564 DOI: 10.1016/j.jpaa.2016.07.003
  66. “Infinity category theory from scratch” In Higher Structures 4.1, 2020 URL: https://higher-structures.math.cas.cz/api/files/issues/Vol4Iss1/RiehlVerity
  67. Egbert Rijke “Introduction to Homotopy Type Theory”, 2020 URL: https://github.com/EgbertRijke/HoTT-Intro
  68. Michael Shulman “All (∞,1)1(\infty,1)( ∞ , 1 )-toposes have strict univalent universes”, 2019 arXiv: https://arxiv.org/abs/1904.07004
  69. Michael Shulman “Elementary (∞,1)1(\infty,1)( ∞ , 1 )-Topoi” n𝑛nitalic_n-Category Café blog post. https://golem.ph.utexas.edu/category/2017/04/elementary_1topoi.html, 2017
  70. Michael Shulman “Homotopy type theory: the logic of space” In New spaces in mathematics. Formal and conceptual reflections Cambridge: Cambridge University Press, 2021, pp. 322–403
  71. Raffael Stenzel “(∞,1)1(\infty,1)( ∞ , 1 )-Categorical Comprehension Schemes” arXiv, 2020 DOI: 10.48550/ARXIV.2010.09663
  72. Raffael Stenzel “Higher geometric sheaf theories”, 2022 arXiv: https://arxiv.org/abs/2205.08646
  73. Raffael Stenzel “Notions of (∞,1)1(\infty,1)( ∞ , 1 )-sites and related formal structures”, 2023 arXiv: https://arxiv.org/abs/2306.06619
  74. Raffael Stenzel “The (∞,2)2(\infty,2)( ∞ , 2 )-category of internal (∞,1)1(\infty,1)( ∞ , 1 )-categories”, 2024 arXiv: https://arxiv.org/abs/2402.01396
  75. Raffael Stenzel “Univalence and completeness of Segal objects” arXiv, 2019 DOI: 10.48550/ARXIV.1911.06640
  76. “Foundations of Relative Category Theory”, 2022 URL: https://www.jonmsterling.com/math/lectures/categorical-foundations.html
  77. Ross Street “Correction to: “Fibrations in bicategories” [Cahiers Topologie Géom. Différentielle 21 (1980), no. 2, 111–160; MR0574662 (81f:18028)]” In Cahiers Topologie Géom. Différentielle Catég. 28.1, 1987, pp. 53–56
  78. Ross Street “Fibrations and Yoneda’s lemma in a 2222-category” In Category Seminar (Proc. Sem., Sydney, 1972/1973), 1974, pp. 104–133. Lecture Notes in Math.\bibrangessepVol. 420 DOI: 10.1007/BFb0063102
  79. Ross Street “Fibrations in bicategories” In Cahiers Topologie Géom. Différentielle 21.2, 1980, pp. 111–160 URL: http://www.numdam.org/article/CTGDC_1980__21_2_111_0.pdf
  80. Thomas Streicher “A Fibrational View of Geometric Morphisms” Unpublished note, http://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/ftgm.pdf, 1997
  81. Thomas Streicher “A model of type theory in simplicial sets: A brief introduction to Voevodsky’s homotopy type theory” In J. Appl. Log. 12.1, 2014, pp. 45–49 DOI: 10.1016/j.jal.2013.04.001
  82. Thomas Streicher “Fibered Categories à la Jean Bénabou”, 2022 arXiv: https://arxiv.org/abs/1801.02927
  83. Thomas Streicher “The World’s Simplest Proof of Moens’s Lemma” URL: https://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/SimplMoens.pdf
  84. Thomas Streicher “Zawadowski’s Cartesian Bifibrations”, 2010 URL: https://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/cartbifib.pdf
  85. The Univalent Foundations Program “Homotopy Type Theory: Univalent Foundations of Mathematics” Institute for Advanced Study: https://homotopytypetheory.org/book, 2013
  86. Vladimir Voevodsky “A simple type system with two identity types” Unpublished note. https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf, 2013
  87. Michael Warren “Directed Type Theory” Lecture at IAS, Princeton, 2013 URL: https://www.youtube.com/watch?v=znn6xEZUKNE
  88. Matthew Z. Weaver and Daniel R. Licata “A Constructive Model of Directed Univalence in Bicubical Sets” In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’20 Saarbrücken, Germany: Association for Computing Machinery, 2020, pp. 915–928 DOI: 10.1145/3373718.3394794
  89. Jonathan Weinberger “A Synthetic Perspective on (∞,1)1(\infty,1)( ∞ , 1 )-Category Theory: Fibrational and Semantic Aspects”, 2022, pp. xxi+177 DOI: https://doi.org/10.26083/tuprints-00020716
  90. Jonathan Weinberger “Strict stability of extension types” arXiv, 2022 DOI: 10.48550/ARXIV.2203.07194
  91. Jonathan Weinberger “Two-sided cartesian fibrations of synthetic (∞,1)1(\infty,1)( ∞ , 1 )-categories”, 2022 arXiv: https://arxiv.org/abs/2204.00938
  92. Marek Zawadowski “Lax monoidal fibrations” In Models, logics, and higher-dimensional categories: A tribute to the work of Mihály Makkai. Proceedings of a conference, CRM, Montréal, Canada, June 18–20, 2009 Providence, RI: American Mathematical Society (AMS), 2011, pp. 341–426
Citations (6)

Summary

We haven't generated a summary for this paper yet.