Two-sided cartesian fibrations of synthetic $(\infty,1)$-categories (2204.00938v3)
Abstract: Within the framework of Riehl-Shulman's synthetic $(\infty,1)$-category theory, we present a theory of two-sided cartesian fibrations. Central results are several characterizations of the two-sidedness condition `{a} la Chevalley, Gray, Street, and Riehl-Verity, a two-sided Yoneda Lemma, as well as the proof of several closure properties. Along the way, we also define and investigate a notion of fibered or sliced fibration which is used later to develop the two-sided case in a modular fashion. We also briefly discuss discrete two-sided cartesian fibrations in this setting, corresponding to $(\infty,1)$-distributors. The systematics of our definitions and results closely follows Riehl-Verity's $\infty$-cosmos theory, but formulated internally to Riehl-Shulman's simplicial extension of homotopy type theory. All the constructions and proofs in this framework are by design invariant under homotopy equivalence. Semantically, the synthetic $(\infty,1)$-categories correspond to internal $(\infty,1)$-categories implemented as Rezk objects in an arbitrary given $(\infty,1)$-topos.
- Benedikt Ahrens, Krzysztof Kapulkin and Michael Shulman “Univalent categories and the Rezk completion” In Math. Struct. Comput. Sci. 25.5, 2015, pp. 1010–1039 DOI: 10.1017/S0960129514000486
- “The Univalence Principle” arXiv, 2021 DOI: 10.48550/ARXIV.2102.06275
- Benedikt Ahrens, Paige Randall North and Niels Weide “Bicategorical type theory: semantics and syntax” In Mathematical Structures in Computer Science 33.10, 2023, pp. 868–912 DOI: 10.1017/S0960129523000312
- “Two-Level Type Theory and Applications”, 2019 arXiv: https://arxiv.org/abs/1705.03307
- Steve Awodey “Type theory and homotopy” arXiv, 2010 DOI: 10.48550/ARXIV.1010.1810
- Steve Awodey and Michael A. Warren “Homotopy theoretic models of identity types” In Mathematical Proceedings of the Cambridge Philosophical Society 146.1 Cambridge University Press, 2009, pp. 45–55 DOI: 10.1017/S0305004108001783
- “Fibrations of ∞\infty∞-categories” In Higher Structures 4.1, 2020 URL: http://journals.mq.edu.au/index.php/higher_structures/article/view/29
- Igor Bakovic “Fibrations of bicategories” In Preprint available at http://www. irb. hr/korisnici/ibakovic/groth2fib. pdf, 2011
- César Bardomiano Martínez “Limits and exponentiable functors in simplicial homotopy type theory”, 2022 arXiv:2202.12386 [math.CT]
- “Parametrized higher category theory and higher algebra: Exposé I – Elements of parametrized higher category theory”, 2016 arXiv: https://arxiv.org/abs/1608.03657
- “Fibrations in ∞\infty∞-category theory” In 2016 MATRIX annals Cham: Springer, 2018, pp. 17–42 DOI: 10.1007/978-3-319-72299-3˙2
- Jean Bénabou “Distributors at Work” Notes from lectures at TU Darmstadt taken by Thomas Streicher, 2000 URL: https://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf
- Jean Bénabou “Les distributeurs, Rapport 33, 1973, Inst. de Math” In Pure et Appl. Univ. Cath. Louvain la Neuve
- David Li-Bland “The stack of higher internal categories and stacks of iterated spans”, 2015 arXiv: https://arxiv.org/abs/1506.08870
- Pedro Boavida de Brito “Segal objects and the Grothendieck construction” In An alpine bouquet of algebraic topology 708, Contemp. Math. Amer. Math. Soc., [Providence], RI, 2018, pp. 19–44 DOI: 10.1090/conm/708/14271
- Francis Borceux “Handbook of Categorical Algebra: Volume 2, Categories and Structures” Cambridge University Press, 1994
- Ulrik Buchholtz “Higher Structures in Homotopy Type Theory” In Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts Cham: Springer International Publishing, 2019, pp. 151–172 DOI: 10.1007/978-3-030-15655-8˙7
- “Synthetic fibered (∞,1)1(\infty,1)( ∞ , 1 )-category theory” In Higher Structures 7, 2023, pp. 74–165 DOI: 10.21136/HS.2023.04
- Paolo Capriotti “Models of Type Theory with Strict Equality”, 2016 URL: http://arxiv.org/abs/1702.04912
- “Univalent Higher Categories via Complete Semi-Segal Types” In Proc. ACM Program. Lang. 2.POPL New York, NY, USA: Association for Computing Machinery, 2017 DOI: 10.1145/3158132
- Evan Cavallo, Emily Riehl and Christian Sattler “On the directed univalence axiom” Talk at AMS Special Session on Homotopy Type Theory, Joint Mathematics Meething, San Diego, 2018 URL: http://www.math.jhu.edu/~eriehl/JMM2018-directed-univalence.pdf
- “Fibered aspects of Yoneda’s regular span” In Advances in Mathematics 360, 2020, pp. 106899 DOI: https://doi.org/10.1016/j.aim.2019.106899
- Denis-Charles Cisinski “Higher Categories and Homotopical Algebra”, Cambridge Studies in Advanced Mathematics Cambridge University Press, 2019 DOI: 10.1017/9781108588737
- Denis-Charles Cisinski “Univalent universes for elegant models of homotopy types”, 2014 arXiv: https://arxiv.org/pdf/1406.0058.pdf
- Denis-Charles Cisinski and Hoang Kim Nguyen “The universal coCartesian fibration”, 2022 arXiv:2210.08945 [math.CT]
- Maria Manuel Clementino and Fernando Lucatelli Nunes “Lax comma 2222-categories and admissible 2222-functors”, 2020 arXiv: https://arxiv.org/abs/2002.03132
- “Cubical Type Theory: a constructive interpretation of the univalence axiom” In 21st International Conference on Types for Proofs and Programs (TYPES 2015), LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018 DOI: 10.4230/LIPIcs.TYPES.2015.5
- G.S.H. Cruttwell and Michael A. Shulman “A unified framework for generalized multicategories” In Theory Appl. Categ. 24, 2010, pp. No. 21\bibrangessep580–655
- Ivan Di Liberti and Fosco Loregian “On the unicity of formal category theories” In arXiv preprint arXiv:1901.01594, 2019
- Imma Gálvez-Carrillo, Joachim Kock and Andrew Tonks “Decomposition spaces and restriction species” In International Mathematics Research Notices 2020.21 Oxford University Press, 2020, pp. 7558–7616
- David Gepner, Rune Haugseng and Thomas Nikolaus “Lax Colimits and Free Fibrations in ∞\infty∞-Categories” In Doc. Math. 22, 2017, pp. 1225–1266 DOI: 10.25537/dm.2017v22.1225-1266
- John W. Gray “Fibred and Cofibred Categories” In Proceedings of the Conference on Categorical Algebra Berlin, Heidelberg: Springer Berlin Heidelberg, 1966, pp. 21–83 DOI: https://doi.org/10.1007/978-3-642-99902-4˙2
- Daniel Grayson “An introduction to univalent foundations for mathematicians” In Bulletin of the American Mathematical Society 55.4 American Mathematical Society (AMS), 2018, pp. 427–450 DOI: 10.1090/bull/1616
- Rune Haugseng “The higher Morita category of 𝔼nsubscript𝔼𝑛\mathbb{E}_{n}blackboard_E start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT-algebras” In Geometry & Topology 21.3 Mathematical Sciences Publishers, 2017, pp. 1631–1730
- “Two-variable fibrations, factorisation systems and-categories of spans” In Forum of Mathematics, Sigma 11, 2023, pp. e111 Cambridge University Press
- Claudio Hermida “On fibred adjunctions and completeness for fibred categories” In Recent Trends in Data Type Specification Springer, 1992, pp. 235–251 DOI: 10.1007/3-540-57867-6˙14
- “The groupoid model refutes uniqueness of identity proofs” In Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science, 1994, pp. 208–212 DOI: 10.1109/LICS.1994.316071
- “Lifting Grothendieck universes” In Unpublished note, 199? URL: https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf
- André Joyal “Notes on quasi-categories”, 2008 URL: http://www.math.uchicago.edu/~may/IMA/Joyal.pdf
- André Joyal “Quasi-categories and Kan complexes” Special volume celebrating the 70th birthday of Professor Max Kelly In J. Pure Appl. Algebra 175.1-3, 2002, pp. 207–222 DOI: 10.1016/S0022-4049(02)00135-4
- Krzysztof Kapulkin and Peter LeFanu Lumsdaine “The simplicial model of Univalent Foundations (after Voevodsky)” In Journal of the European Mathematical Society 23.6, 2021, pp. 2071–2126
- Alex Kavvos “A Quantum of Direction” preprint, 2019 URL: https://www.lambdabetaeta.eu/papers/meio.pdf
- “Local fibred right adjoints are polynomial” In Math. Struct. Comput. Sci. 23.1 Cambridge University Press, 2013, pp. 131–141 DOI: 10.1017/S0960129512000217
- Nikolai Kudasov “Rzk” An experimental proof assistant based on a type theory for synthetic ∞\infty∞-categories URL: https://github.com/rzk-lang/rzk
- Nikolai Kudasov, Emily Riehl and Jonathan Weinberger “Formalizing the ∞\infty∞-Categorical Yoneda Lemma” In Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs, 2024, pp. 274–290
- Daniel R. Licata and Robert Harper “2-dimensional directed type theory” In Twenty-Seventh Conference on the Mathematical Foundations of Programming Semantics (MFPS XXVII) 276, Electron. Notes Theor. Comput. Sci. Elsevier Sci. B. V., Amsterdam, 2011, pp. 263–289 DOI: 10.1016/j.entcs.2011.09.026
- “Categorical notions of fibration” In Expo. Math. 38.4, 2020, pp. 496–514 DOI: 10.1016/j.exmath.2019.02.004
- Jacob Lurie “Higher Algebra” https://www.math.ias.edu/~lurie/papers/HA.pdf, 2017
- Jacob Lurie “Higher Topos Theory”, Annals of Mathematics Studies 170 Princeton University Press, 2009 arXiv:math/0608040
- Louis Martini “Cocartesian fibrations and straightening internal to an ∞\infty∞-topos” In arXiv preprint arXiv:2204.00295, 2022
- Louis Martini “Yoneda’s lemma for internal higher categoriess”, 2021 arXiv: https://arxiv.org/abs/2103.17141
- “Internal higher topos theory” In arXiv preprint arXiv:2303.06437, 2023
- “Limits and colimits in internal higher category theory”, 2022 arXiv: https://arxiv.org/abs/2111.14495
- Erin McCloskey “Relative Weak Factorization Systems”, 2022
- Giuseppe Metere “Distributors and the comprehensive factorization system for internal groupoids” In arXiv preprint arXiv:1701.05139, 2017
- Hoang Kim Nguyen “Theorems in Higher Category Theory and Applications”, 2019 URL: https://epub.uni-regensburg.de/38448/
- Paige Randall North “Towards a Directed Homotopy Type Theory” Proceedings of the Thirty-Fifth Conference on the Mathematical Foundations of Programming Semantics In Electronic Notes in Theoretical Computer Science 347, 2019, pp. 223–239 DOI: https://doi.org/10.1016/j.entcs.2019.09.012
- Andreas Nuyts “Towards a Directed Homotopy Type Theory based on 4 Kinds of Variance”, 2015 URL: https://anuyts.github.io/files/mathesis.pdf
- Ian Orton and Andrew M. Pitts “Axioms for modelling cubical type theory in a topos” Id/No 24 In 25th EACSL annual conference and 30th workshop on computer science logic, CSL’16, Marseille, France, August 29 – September 1, 2016. Proceedings Wadern: Schloss Dagstuhl – Leibniz Zentrum für Informatik, 2016, pp. 19 DOI: 10.4230/LIPIcs.CSL.2016.24
- “2-catégories réductibles” In Theory and Applications of Categories Reprints (no. 19, 2010), 1978
- Nima Rasekh “Cartesian fibrations and representability” In Homology, Homotopy and Applications 24.2 International Press of Boston, 2022, pp. 135–161
- Nima Rasekh “Cartesian Fibrations of Complete Segal Spaces” In Higher Structures 7, 2023, pp. 40–73 DOI: https://articles.math.cas.cz/10.21136/HS.2023.03
- Charles Rezk “Stuff about quasicategories”, 2017 URL: https://faculty.math.illinois.edu/~rezk/quasicats.pdf
- Charles Rezk “Toposes and homotopy toposes” Unpublished note. http://www.math.uiuc.edu/~rezk/homotopy-topos-sketch.pdf, 2010
- Emily Riehl “Math 721: Homotopy type theory” Course notes, 2021 URL: https://github.com/emilyriehl/721/blob/master/721lectures.pdf
- “A type theory for synthetic ∞\infty∞-categories” In Higher Structures 1.1, 2017, pp. 147–224 URL: https://higher-structures.math.cas.cz/api/files/issues/Vol1Iss1/RiehlShulman
- “Cartesian exponentiation and monadicity”, 2021 arXiv: https://arxiv.org/abs/2101.09853
- “Elements of ∞\infty∞-Category Theory”, Cambridge Studies in Advanced Mathematics Cambridge University Press, 2022
- “Fibrations and Yoneda’s lemma in an ∞\infty∞-cosmos” In J. Pure Appl. Algebra 221.3, 2017, pp. 499–564 DOI: 10.1016/j.jpaa.2016.07.003
- “Homotopy coherent adjunctions and the formal theory of monads” In Advances in Mathematics 286, 2016, pp. 802–888 DOI: https://doi.org/10.1016/j.aim.2015.09.011
- “Infinity category theory from scratch” In Higher Structures 4.1, 2020 URL: https://higher-structures.math.cas.cz/api/files/issues/Vol4Iss1/RiehlVerity
- “Kan extensions and the calculus of modules for ∞\infty∞-categories” In Algebr. Geom. Topol. 17.1, 2017, pp. 189–271 DOI: 10.2140/agt.2017.17.189
- “The 2222-category theory of quasi-categories” In Advances in Mathematics 280, 2015, pp. 549–642 DOI: 10.1016/j.aim.2015.04.021
- Egbert Rijke “Introduction to Homotopy Type Theory”, 2020 URL: https://github.com/EgbertRijke/HoTT-Intro
- Jaco Ruit “Formal category theory in ∞\infty∞-equipments I” In arXiv preprint arXiv:2308.03583, 2023
- The sHoTT Community “sHoTT Library in Rzk”, 2024 URL: https://rzk-lang.github.io/sHoTT/
- Michael Shulman “All (∞,1)1(\infty,1)( ∞ , 1 )-toposes have strict univalent universes”, 2019 arXiv: https://arxiv.org/abs/1904.07004
- Michael Shulman “The univalence axiom for elegant Reedy presheaves” In Homology Homotopy Appl. 17.2, 2015, pp. 81–106 DOI: 10.4310/HHA.2015.v17.n2.a6
- Michael Shulman “Univalence for inverse diagrams and homotopy canonicity” In Math. Structures Comput. Sci. 25.5, 2015, pp. 1203–1277 DOI: 10.1017/S0960129514000565
- Michael Shulman “Univalence for inverse EI diagrams” In Homology Homotopy Appl. 19.2, 2017, pp. 219–249 DOI: 10.4310/HHA.2017.v19.n2.a12
- Mike Shulman “An explicit description of cocomma-categories?” version: 2016-08-11, MathOverflow URL: https://mathoverflow.net/q/247311
- Raffael Stenzel “Univalence and completeness of Segal objects” arXiv, 2019 DOI: 10.48550/ARXIV.1911.06640
- Danny Stevenson “Model structures for correspondences and bifibrations” In arXiv preprint arXiv:1807.08226, 2018
- Ross Street “Correction to: “Fibrations in bicategories” [Cahiers Topologie Géom. Différentielle 21 (1980), no. 2, 111–160; MR0574662 (81f:18028)]” In Cahiers Topologie Géom. Différentielle Catég. 28.1, 1987, pp. 53–56
- Ross Street “Elementary cosmoi. I”, Category Sem., Proc., Sydney 1972/1973, Lect. Notes Math. 420, 134-180 (1974)., 1974
- Ross Street “Fibrations and Yoneda’s lemma in a 2222-category” In Category Seminar (Proc. Sem., Sydney, 1972/1973), 1974, pp. 104–133. Lecture Notes in Math.\bibrangessepVol. 420 DOI: 10.1007/BFb0063102
- Ross Street “Fibrations in bicategories” In Cahiers Topologie Géom. Différentielle 21.2, 1980, pp. 111–160 URL: http://www.numdam.org/article/CTGDC_1980__21_2_111_0.pdf
- Thomas Streicher “A model of type theory in simplicial sets: a brief introduction to Voevodsky’s homotopy type theory” In J. Appl. Log. 12.1, 2014, pp. 45–49 DOI: 10.1016/j.jal.2013.04.001
- Thomas Streicher “Fibered Categories à la Jean Bénabou”, 2022 arXiv: https://arxiv.org/abs/1801.02927
- Andrew Swan “Separating Path and Identity Types in Presheaf Models of Univalent Type Theory”, 2018 arXiv: https://arxiv.org/abs/1808.00920
- The Univalent Foundations Program “Homotopy Type Theory: Univalent Foundations of Mathematics” Institute for Advanced Study: https://homotopytypetheory.org/book, 2013
- Vladimir Voevodsky “A simple type system with two identity types” Unpublished note. https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf, 2013
- Vladimir Voevodsky “Notes on type systems” Unpublished, https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/expressions_current.pdf, 2009
- Tamara Von Glehn “Polynomials, fibrations and distributive laws” In Theory and Applications of Categories 33.36, 2018, pp. 1111–1144
- Michael Warren “Directed Type Theory” Lecture at IAS, Princeton, 2013 URL: https://www.youtube.com/watch?v=znn6xEZUKNE
- Matthew Z. Weaver and Daniel R. Licata “A Constructive Model of Directed Univalence in Bicubical Sets” In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’20 Saarbrücken, Germany: Association for Computing Machinery, 2020, pp. 915–928 DOI: 10.1145/3373718.3394794
- Jonathan Weinberger “A Synthetic Perspective on (∞,1)1(\infty,1)( ∞ , 1 )-Category Theory: Fibrational and Semantic Aspects”, 2022, pp. xxi+177 DOI: https://doi.org/10.26083/tuprints-00020716
- Jonathan Weinberger “Internal sums for synthetic fibered (∞,1)1(\infty,1)( ∞ , 1 )-categories”, 2022 arXiv:2205.00386 [math.CT]
- Jonathan Weinberger “Strict stability of extension types” arXiv, 2022 DOI: 10.48550/ARXIV.2203.07194
- Nobuo Yoneda “On Ext and exact sequences” In J. Fac. Sci. Univ. Tokyo Sect. I 8.507-576, 1960, pp. 1960