Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Aggregation of Stack Trace Similarities for Crash Report Deduplication (2205.00212v1)

Published 30 Apr 2022 in cs.SE

Abstract: The automatic collection of stack traces in bug tracking systems is an integral part of many software projects and their maintenance. However, such reports often contain a lot of duplicates, and the problem of de-duplicating them into groups arises. In this paper, we propose a new approach to solve the deduplication task and report on its use on the real-world data from JetBrains, a leading developer of IDEs and other software. Unlike most of the existing methods, which assign the incoming stack trace to a particular group in which a single most similar stack trace is located, we use the information about all the calculated similarities to the group, as well as the information about the timestamp of the stack traces. This approach to aggregating all available information shows significantly better results compared to existing solutions. The aggregation improved the results over the state-of-the-art solutions by 15 percentage points in the Recall Rate Top-1 metric on the existing NetBeans dataset and by 8 percentage points on the JetBrains data. Additionally, we evaluated a simpler k-Nearest Neighbors approach to aggregation and showed that it cannot reach the same levels of improvement. Finally, we studied what features from the aggregation contributed the most towards better quality to understand which of them to develop further. We publish the implementation of the suggested approach, and will release the newly collected industrial dataset upon acceptance to facilitate further research in the area.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube