Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Reconstruction of decays to merged photons using end-to-end deep learning with domain continuation in the CMS detector (2204.12313v2)

Published 26 Apr 2022 in hep-ex and physics.ins-det

Abstract: A novel technique based on machine learning is introduced to reconstruct the decays of highly Lorentz-boosted particles. Using an end-to-end deep learning strategy, the technique bypasses existing rule-based particle reconstruction methods typically used in high energy physics analyses. It uses minimally processed detector data as input and directly outputs particle properties of interest. The new technique is demonstrated for the reconstruction of the invariant mass of particles decaying in the CMS detector. The decay of a hypothetical scalar particle $\mathcal{A}$ into two photons, $\mathcal{A}$ $\to$ $\gamma\gamma$, is chosen as a benchmark decay. Lorentz boosts $\gamma_\mathrm{L}$ = 60-600 are considered, ranging from regimes where both photons are resolved to those where the photons are closely merged as one object. A training method using domain continuation is introduced, enabling the invariant mass reconstruction of unresolved photon pairs in a novel way. The new technique is validated using $\pi0$ $\to$ $\gamma \gamma$ decays in LHC collision data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. A. Abdesselam et al., “Boosted objects: a probe of beyond the standard model physics”, Eur. Phys. J. C 71 (2011) 1661, 10.1140/epjc/s10052-011-1661-y, arXiv:1012.5412.
  2. CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, 10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
  3. ATLAS Collaboration, “Jet reconstruction and performance using particle flow with the ATLAS detector”, Eur. Phys. J. C 77 (2017) 466, 10.1140/epjc/s10052-017-5031-2, arXiv:1703.10485.
  4. CMS Collaboration, “Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks in pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. Lett. 124 (2020) 202001, 10.1103/PhysRevLett.124.202001, arXiv:1911.03800.
  5. CMS Collaboration, “Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair”, Phys. Rev. Lett. 120 (2018) 071802, 10.1103/PhysRevLett.120.071802, arXiv:1709.05543.
  6. ATLAS Collaboration, “Measurements of \ttbar\ttbar\ttbar differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV using the ATLAS detector”, Phys. Rev. D 98 (2018) 012003, 10.1103/PhysRevD.98.012003, arXiv:1801.02052.
  7. ATLAS Collaboration, “Identification of boosted Higgs bosons decaying into bb\mathrm{b}roman_b-quark pairs with the ATLAS detector at 13 TeV”, Eur. Phys. J. C 79 (2019) 836, 10.1140/epjc/s10052-019-7335-x, arXiv:1906.11005.
  8. CMS Collaboration, “Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV”, JINST 10 (2015) P08010, 10.1088/1748-0221/10/08/P08010, arXiv:1502.02702.
  9. D. Curtin et al., “Exotic decays of the 125 GeV Higgs boson”, Phys. Rev. D 90 (2014) 075004, 10.1103/PhysRevD.90.075004, arXiv:1312.4992.
  10. N. Toro and I. Yavin, “Multiphotons and photon jets from new heavy vector bosons”, Phys. Rev. D 86 (2012) 055005, 10.1103/PhysRevD.86.055005, arXiv:1202.6377.
  11. M. Bauer, M. Neubert, and A. Thamm, “Collider probes of axion-like particles”, JHEP 12 (2017) 044, 10.1007/jhep12(2017)044, arXiv:1708.00443.
  12. B. A. Dobrescu, G. Landsberg, and K. T. Matchev, “Higgs boson decays to CPCP\mathrm{CP}roman_CP-odd scalars at the Fermilab Tevatron and beyond”, Phys. Rev. D 63 (2001) 075003, 10.1103/PhysRevD.63.075003, arXiv:hep-ph/0005308.
  13. CMS Collaboration, “Observation of the diphoton decay of the Higgs boson and measurement of its properties”, Eur. Phys. J. C 74 (2014) 3076, 10.1140/epjc/s10052-014-3076-z, arXiv:1407.0558.
  14. CMS Collaboration, “Combined measurements of Higgs boson couplings in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Eur. Phys. J. C 79 (2019) 421, 10.1140/epjc/s10052-019-6909-y, arXiv:1809.10733.
  15. M. Andrews, M. Paulini, S. Gleyzer, and B. Poczos, “End-to-end physics event classification with CMS open data: applying image-based deep learning to detector data for the direct classification of collision events at the LHC”, Comput. Softw. Big Sci. 4 (2020) 6, 10.1007/s41781-020-00038-8, arXiv:1807.11916.
  16. CMS Collaboration, “Pileup mitigation at CMS in 13 TeV data”, JINST 15 (2020) P09018, 10.1088/1748-0221/15/09/p09018, arXiv:2003.00503.
  17. CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
  18. G. Kasieczka, T. Plehn, M. Russell, and T. Schell, “Deep-learning top taggers or the end of QCD?”, JHEP 05 (2017) 006, 10.1007/JHEP05(2017)006, arXiv:1701.08784.
  19. ATLAS Collaboration, “Performance of top-quark and WW\mathrm{W}roman_W-boson tagging with ATLAS in Run 2 of the LHC”, Eur. Phys. J. C 79 (2019) 375, 10.1140/epjc/s10052-019-6847-8, arXiv:1808.07858.
  20. X. Ju and B. Nachman, “Supervised jet clustering with graph neural networks for Lorentz boosted bosons”, Phys. Rev. D 102 (2020) 075014, 10.1103/PhysRevD.102.075014, arXiv:2008.06064.
  21. P. T. Komiske, E. M. Metodiev, and J. Thaler, “Energy flow networks: deep sets for particle jets”, JHEP 01 (2019) 121, 10.1007/JHEP01(2019)121, arXiv:1810.05165.
  22. H. Qu and L. Gouskos, “ParticleNet: jet tagging via particle clouds”, Phys. Rev. D 101 (2020) 056019, 10.1103/PhysRevD.101.056019, arXiv:1902.08570.
  23. CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”, JINST 13 (2017) P05011, 10.1088/1748-0221/13/05/P05011, arXiv:1712.07158.
  24. CMS Collaboration, “A deep neural network for simultaneous estimation of bb\mathrm{b}roman_b quark energy and resolution”, Comput. Softw. Big Sci. 4 (2020) 10, 10.1007/s41781-020-00041-z, arXiv:1912.06046.
  25. CMS Collaboration, “A deep neural network to search for new long-lived particles decaying to jets”, Mach. Learn. Sci. Tech. 1 (2020) 035012, 10.1088/2632-2153/ab9023, arXiv:1912.12238.
  26. A. Butter, G. Kasieczka, T. Plehn, and M. Russell, “Deep-learned top tagging with a Lorentz layer”, SciPost Phys. 5 (2018) 028, 10.21468/SciPostPhys.5.3.028, arXiv:1707.08966.
  27. G. Louppe, K. Cho, C. Becot, and K. Cranmer, “QCD-aware recursive neural networks for jet physics”, JHEP 01 (2019) 057, 10.1007/JHEP01(2019)057, arXiv:1702.00748.
  28. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks”, Commun. ACM 60 (2017) 84, 10.1145/3065386.
  29. A. Esteva et al., “Dermatologist-level classification of skin cancer with deep neural networks”, Nature 542 (2017) 115, 10.1038/nature21056.
  30. D. Silver et al., “A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play”, Science 362 (2018) 1140, 10.1126/science.aar6404, arXiv:1712.01815.
  31. A. W. Senior et al., “Improved protein structure prediction using potentials from deep learning”, Nature 577 (2020) 706, 10.1038/s41586-019-1923-7.
  32. A. Aurisano et al., “A convolutional neural network neutrino event classifier”, JINST 11 (2016) P09001, 10.1088/1748-0221/11/09/P09001, arXiv:1604.01444.
  33. MicroBooNE Collaboration, “Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber”, Phys. Rev. D 99 (2019) 092001, 10.1103/PhysRevD.99.092001, arXiv:1808.07269.
  34. L. Uboldi et al., “Extracting low energy signals from raw LArTPC waveforms using deep learning techniques – a proof of concept”, Nucl. Instrum. Meth. A 1028 (2022) 166371, 10.1016/j.nima.2022.166371, arXiv:2106.09911.
  35. M. Andrews et al., “End-to-end jet classification of quarks and gluons with the CMS open data”, Nucl. Instrum. Meth. A 977 (2020) 164304, 10.1016/j.nima.2020.164304, arXiv:1902.08276.
  36. L. De Oliveira, B. Nachman, and M. Paganini, “Electromagnetic showers beyond shower shapes”, Nucl. Instrum. Meth. A 951 (2020) 162879, 10.1016/j.nima.2019.162879, arXiv:1806.05667.
  37. X. Ju et al., “Graph neural networks for particle reconstruction in high energy physics detectors”, in 33rd Ann. Conf. Neural Information Processing Systems. 2020. arXiv:2003.11603.
  38. S. R. Qasim, J. Kieseler, Y. Iiyama, and M. Pierini, “Learning representations of irregular particle-detector geometry with distance-weighted graph networks”, Eur. Phys. J. C 79 (2019) 608, 10.1140/epjc/s10052-019-7113-9, arXiv:1902.07987.
  39. M. Andrews, M. Paulini, S. Gleyzer, and B. Poczos, “End-to-End event classification of high-energy physics data”, J. Phys. Conf. Ser. 1085 (2018) 042022, 10.1088/1742-6596/1085/4/042022.
  40. CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
  41. CMS Collaboration, “Measurement of the inclusive WW\mathrm{W}roman_W and ZZ\mathrm{Z}roman_Z production cross sections in pp collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV”, JHEP 10 (2011) 132, 10.1007/JHEP10(2011)132, arXiv:1107.4789.
  42. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”, 2016 IEEE Conf. Computer Vision and Pattern Recognition (2016) 10.1109/CVPR.2016.90, arXiv:1512.03385.
  43. D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization”, in 3rd Int. Conf. for Learning Representations. 2015. arXiv:1412.6980.
  44. The ATLAS Collaboration, The CMS Collaboration, The LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011.
  45. GlueX Collaboration, “Search for photoproduction of axion-like particles at GlueX”, 2021. arXiv:2109.13439.
Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube