Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Video Frame Interpolation Based on Deformable Kernel Region (2204.11396v1)

Published 25 Apr 2022 in cs.CV

Abstract: Video frame interpolation task has recently become more and more prevalent in the computer vision field. At present, a number of researches based on deep learning have achieved great success. Most of them are either based on optical flow information, or interpolation kernel, or a combination of these two methods. However, these methods have ignored that there are grid restrictions on the position of kernel region during synthesizing each target pixel. These limitations result in that they cannot well adapt to the irregularity of object shape and uncertainty of motion, which may lead to irrelevant reference pixels used for interpolation. In order to solve this problem, we revisit the deformable convolution for video interpolation, which can break the fixed grid restrictions on the kernel region, making the distribution of reference points more suitable for the shape of the object, and thus warp a more accurate interpolation frame. Experiments are conducted on four datasets to demonstrate the superior performance of the proposed model in comparison to the state-of-the-art alternatives.

Citations (7)

Summary

We haven't generated a summary for this paper yet.