Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RedMotion: Motion Prediction via Redundancy Reduction (2306.10840v3)

Published 19 Jun 2023 in cs.CV and cs.RO

Abstract: We introduce RedMotion, a transformer model for motion prediction in self-driving vehicles that learns environment representations via redundancy reduction. Our first type of redundancy reduction is induced by an internal transformer decoder and reduces a variable-sized set of local road environment tokens, representing road graphs and agent data, to a fixed-sized global embedding. The second type of redundancy reduction is obtained by self-supervised learning and applies the redundancy reduction principle to embeddings generated from augmented views of road environments. Our experiments reveal that our representation learning approach outperforms PreTraM, Traj-MAE, and GraphDINO in a semi-supervised setting. Moreover, RedMotion achieves competitive results compared to HPTR or MTR++ in the Waymo Motion Prediction Challenge. Our open-source implementation is available at: https://github.com/kit-mrt/future-motion

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com