Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Signed spectral Turań type theorems (2204.09870v3)

Published 21 Apr 2022 in math.CO

Abstract: A signed graph $\Sigma = (G, \sigma)$ is a graph where the function $\sigma$ assigns either $1$ or $-1$ to each edge of the simple graph $G$. The adjacency matrix of $\Sigma$, denoted by $A(\Sigma)$, is defined canonically. In a paper, Wang et al. extended the eigenvalue bounds of Hoffman and Cvetkovi\'{c} for the signed graphs. They proposed an open problem related to the balanced clique number and the largest eigenvalue of a signed graph. We solve a strengthened version of this open problem. As a byproduct, we give alternate proofs for some of the known classical bounds for the least eigenvalues of the unsigned graphs. We extend the Tur\'{a}n's inequality for the signed graphs. Besides, we study the Bollob\'{a}s and Nikiforov conjecture for the signed graphs and show that the conjecture need not be true for the signed graphs. Nevertheless, the conjecture holds for signed graphs under some assumptions. Finally, we study some of the relationships between the number of signed walks and the largest eigenvalue of a signed graph.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube