Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Masked Image Reconstruction Network for Document-level Relation Extraction (2204.09851v2)

Published 21 Apr 2022 in cs.CL

Abstract: Document-level relation extraction aims to extract relations among entities within a document. Compared with its sentence-level counterpart, Document-level relation extraction requires inference over multiple sentences to extract complex relational triples. Previous research normally complete reasoning through information propagation on the mention-level or entity-level document-graphs, regardless of the correlations between the relationships. In this paper, we propose a novel Document-level Relation Extraction model based on a Masked Image Reconstruction network (DRE-MIR), which models inference as a masked image reconstruction problem to capture the correlations between relationships. Specifically, we first leverage an encoder module to get the features of entities and construct the entity-pair matrix based on the features. After that, we look on the entity-pair matrix as an image and then randomly mask it and restore it through an inference module to capture the correlations between the relationships. We evaluate our model on three public document-level relation extraction datasets, i.e. DocRED, CDR, and GDA. Experimental results demonstrate that our model achieves state-of-the-art performance on these three datasets and has excellent robustness against the noises during the inference process.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Liang Zhang (357 papers)
  2. Yidong Cheng (3 papers)
Citations (2)