Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Adapt Domain Shifts of Moral Values via Instance Weighting (2204.07603v2)

Published 15 Apr 2022 in cs.CL and cs.SI

Abstract: Classifying moral values in user-generated text from social media is critical in understanding community cultures and interpreting user behaviors of social movements. Moral values and language usage can change across the social movements; however, text classifiers are usually trained in source domains of existing social movements and tested in target domains of new social issues without considering the variations. In this study, we examine domain shifts of moral values and language usage, quantify the effects of domain shifts on the morality classification task, and propose a neural adaptation framework via instance weighting to improve cross-domain classification tasks. The quantification analysis suggests a strong correlation between morality shifts, language usage, and classification performance. We evaluate the neural adaptation framework on a public Twitter data across 7 social movements and gain classification improvements up to 12.1\%. Finally, we release a new data of the COVID-19 vaccine labeled with moral values and evaluate our approach on the new target domain. For the case study of the COVID-19 vaccine, our adaptation framework achieves up to 5.26\% improvements over neural baselines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xiaolei Huang (45 papers)
  2. Alexandra Wormley (1 paper)
  3. Adam Cohen (1 paper)
Citations (12)

Summary

We haven't generated a summary for this paper yet.