Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PARC: Physics-Aware Recurrent Convolutional Neural Networks to Assimilate Meso-scale Reactive Mechanics of Energetic Materials (2204.07234v3)

Published 4 Apr 2022 in cond-mat.mtrl-sci and cs.LG

Abstract: The thermo-mechanical response of shock-initiated energetic materials (EM) is highly influenced by their microstructures, presenting an opportunity to engineer EM microstructure in a "materials-by-design" framework. However, the current design practice is limited, as a large ensemble of simulations is required to construct the complex EM structure-property-performance linkages. We present the Physics-Aware Recurrent Convolutional (PARC) Neural Network, a deep-learning algorithm capable of learning the mesoscale thermo-mechanics of EM from a modest number of high-resolution direct numerical simulations (DNS). Validation results demonstrated that PARC could predict the themo-mechanical response of shocked EM with a comparable accuracy to DNS but with notably less computation time. The physics awareness of PARC enhances its modeling capabilities and generalizability, especially when challenged in unseen prediction scenarios. We also demonstrate that visualizing the artificial neurons at PARC can shed light on important aspects of EM thermos-mechanics and provide an additional lens for conceptualizing EM.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub