Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine learning materials physics: Multi-resolution neural networks learn the free energy and nonlinear elastic response of evolving microstructures (2001.01575v2)

Published 31 Dec 2019 in cs.CE

Abstract: Many important multi-component crystalline solids undergo mechanochemical spinodal decomposition: a phase transformation in which the compositional redistribution is coupled with structural changes of the crystal, resulting in dynamically evolving microstructures. The ability to rapidly compute the macroscopic behavior based on these detailed microstructures is of paramount importance for accelerating material discovery and design. Here, our focus is on the macroscopic, nonlinear elastic response of materials harboring microstructure. Because of the diversity of microstructural patterns that can form, there is interest in taking a purely computational approach to predicting their macroscopic response. However, the evaluation of macroscopic, nonlinear elastic properties purely based on direct numerical simulations (DNS) is computationally very expensive, and hence impractical for material design when a large number of microstructures need to be tested. A further complexity of a hierarchical nature arises if the elastic free energy and its variation with strain is a small-scale fluctuation on the dominant trajectory of the total free energy driven by microstructural dynamics. To address these challenges, we present a data-driven approach, which combines advanced neural network (NN) models with DNS to predict the homogenized, macroscopic, mechanical free energy and stress fields arising in a family of multi-component crystalline solids that develop microstructure. The hierarchical structure of the free energy's evolution induces a multi-resolution character to the machine learning paradigm: We construct knowledge-based neural networks (KBNNs) with either pre-trained fully connected deep neural networks (DNNs), or pre-trained convolutional neural networks (CNNs) that describe the dominant characteristic of the data to fully represent the hierarchically evolving free energy.

Citations (61)

Summary

We haven't generated a summary for this paper yet.