Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sentiment Analysis of Political Tweets for Israel using Machine Learning (2204.06515v1)

Published 12 Apr 2022 in cs.IR and cs.LG

Abstract: Sentiment Analysis is a vital research topic in the field of Computer Science. With the accelerated development of Information Technology and social networks, a massive amount of data related to comment texts has been generated on web applications or social media platforms like Twitter. Due to this, people have actively started proliferating general information and the information related to political opinions, which becomes an important reason for analyzing public reactions. Most researchers have used social media specifics or contents to analyze and predict public opinion concerning political events. This research proposes an analytical study using Israeli political Twitter data to interpret public opinion towards the Palestinian-Israeli conflict. The attitudes of ethnic groups and opinion leaders in the form of tweets are analyzed using Machine Learning algorithms like Support Vector Classifier (SVC), Decision Tree (DT), and Naive Bayes (NB). Finally, a comparative analysis is done based on experimental results from different models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Amisha Gangwar (4 papers)
  2. Tanvi Mehta (2 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.