Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring Political Preferences from Twitter (2007.10604v1)

Published 21 Jul 2020 in cs.SI, cs.CY, and cs.LG

Abstract: Sentiment analysis is the task of automatic analysis of opinions and emotions of users towards an entity or some aspect of that entity. Political Sentiment Analysis of social media helps the political strategists to scrutinize the performance of a party or candidate and improvise their weaknesses far before the actual elections. During the time of elections, the social networks get flooded with blogs, chats, debates and discussions about the prospects of political parties and politicians. The amount of data generated is much large to study, analyze and draw inferences using the latest techniques. Twitter is one of the most popular social media platforms enables us to perform domain-specific data preparation. In this work, we chose to identify the inclination of political opinions present in Tweets by modelling it as a text classification problem using classical machine learning. The tweets related to the Delhi Elections in 2020 are extracted and employed for the task. Among the several algorithms, we observe that Support Vector Machines portrays the best performance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.