Density Matrix Renormalization Group with Tensor Processing Units (2204.05693v1)
Abstract: Google's Tensor Processing Units (TPUs) are integrated circuits specifically built to accelerate and scale up machine learning workloads. They can perform fast distributed matrix multiplications and therefore be repurposed for other computationally intensive tasks. In this work we demonstrate the use of TPUs for accelerating and scaling up the density matrix renormalization group (DMRG), a powerful numerical approach to compute the ground state of a local quantum many-body Hamiltonian. The cost of DMRG scales with system size $N$ as $O(ND3)$, where the so-called bond dimension $D$ regulates how expressive the underlying matrix product state (MPS) variational ansatz is. We consider lattice models in two spatial dimensions, with square lattices of size $10\times 10$ (free fermions) and $20\times 20$ (transverse field Ising model), for which the required MPS bond dimension is known to scale at least as $\exp(\sqrt{N})$. Using half of a TPU v3 pod (namely $1,!024$ TPU v3 cores) we reached an unprecedentedly large bond dimension $D = 2{16} = 65,!536$, for which optimizing a single MPS tensor took about 2 minutes.
- S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).
- S. R. White, Density-matrix algorithms for quantum renormalization groups, Physical Review B 48, 10345 (1993).
- K. A. Hallberg, Density-matrix algorithm for the calculation of dynamical properties of low-dimensional systems, Physical Review B 52, R9827 (1995).
- T. D. Kühner and S. R. White, Dynamical correlation functions using the density matrix renormalization group, Physical Review B 60, 335 (1999).
- E. Jeckelmann, Dynamical density-matrix renormalization-group method, Physical Review B 66, 045114 (2002).
- T. Barthel, U. Schollwöck, and S. R. White, Spectral functions in one-dimensional quantum systems at finite temperature using the density matrix renormalization group, Physical Review B 79, 245101 (2009).
- B. Pirvu, J. Haegeman, and F. Verstraete, Matrix product state based algorithm for determining dispersion relations of quantum spin chains with periodic boundary conditions, Physical Review B 85, 035130 (2012), publisher: American Physical Society.
- T. Nishino, Density Matrix Renormalization Group Method for 2D Classical Models, Journal of the Physical Society of Japan 64, 3598 (1995).
- T. Nishino and K. Okunishi, Corner Transfer Matrix Renormalization Group Method, Journal of the Physical Society of Japan 65, 891 (1996).
- G. Vidal, Efficient Classical Simulation of Slightly Entangled Quantum Computations, Physical Review Letters 91, 147902 (2003).
- F. Verstraete and J. I. Cirac, Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions, arXiv:cond-mat/0407066 (2004).
- G. Vidal, Entanglement Renormalization, Physical Review Letters 99, 220405 (2007).
- G. Vidal, A class of quantum many-body states that can be efficiently simulated, Physical Review Letters , 110501 (2008).
- I. P. McCulloch, Infinite size density matrix renormalization group, revisited, arXiv:0804.2509 (2008).
- S. R. White and R. L. Martin, Ab initio quantum chemistry using the density matrix renormalization group, The Journal of Chemical Physics 110, 4127 (1999).
- G. K.-L. Chan and S. Sharma, The Density Matrix Renormalization Group in Quantum Chemistry, Annual Review of Physical Chemistry 62, 465 (2011).
- S. Wouters and D. Van Neck, The density matrix renormalization group for ab initio quantum chemistry, The European Physical Journal D 68, 272 (2014).
- M. Reiher, DMRG in Quantum Chemistry: From its relation to traditional methods to n-orbital density matrices and beyond, Presentation at Oxford .
- S. R. White and E. M. Stoudenmire, Multi-sliced Gausslet Basis Sets for Electronic Structure, Physical Review B 99, 081110 (2019).
- A. Baiardi and M. Reiher, The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges, The Journal of Chemical Physics 152, 040903 (2020).
- Y. Qiu and S. R. White, Hybrid gausslet/Gaussian basis sets, arXiv:2103.02734 [physics] (2021).
- M. B. Hastings, An area law for one-dimensional quantum systems, Journal of Statistical Mechanics: Theory and Experiment 2007, P08024 (2007).
- S. Bravyi, M. Suchara, and A. Vargo, Efficient algorithms for maximum likelihood decoding in the surface code, Physical Review A 90, 032326 (2014).
- A. J. Ferris and D. Poulin, Tensor Networks and Quantum Error Correction, Physical Review Letters 113, 030501 (2014).
- C. T. Chubb and S. T. Flammia, Statistical mechanical models for quantum codes with correlated noise, Annales de l’Institut Henri Poincaré D 8, 269 (2021).
- A. S. Darmawan and D. Poulin, Linear-time general decoding algorithm for the surface code, Physical Review E 97, 051302 (2018).
- I. L. Markov and Y. Shi, Simulating Quantum Computation by Contracting Tensor Networks, SIAM Journal on Computing 38, 963 (2008).
- X. Gao, Z.-Y. Zhang, and L.-M. Duan, A quantum machine learning algorithm based on generative models, Science Advances 4, eaat9004.
- E. M. Stoudenmire and D. J. Schwab, Supervised Learning with Quantum-Inspired Tensor Networks, arXiv:1605.05775 [cond-mat, stat] (2017).
- E. M. Stoudenmire, Learning relevant features of data with multi-scale tensor networks, Quantum Science and Technology 3, 034003 (2018).
- M. Fannes, B. Nachtergaele, and R. F. Werner, Finitely correlated states on quantum spin chains, Communications in Mathematical Physics 144, 443 (1992).
- S. Östlund and S. Rommer, Thermodynamic Limit of Density Matrix Renormalization, Physical Review Letters 75, 3537 (1995).
- S. Rommer and S. Östlund, Class of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization group, Physical Review B 55, 2164 (1997).
- H. Zhai and G. K.-L. Chan, Low communication high performance ab initio density matrix renormalization group algorithms, The Journal of Chemical Physics 154, 224116 (2021).
- U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Annals of Physics 326, 96 (2011).
- I. P. McCulloch, From density-matrix renormalization group to matrix product states, Journal of Statistical Mechanics: Theory and Experiment 2007, P10014 (2007).
- M. Zwolak and G. Vidal, Mixed-State Dynamics in One-Dimensional Quantum Lattice Systems: A Time-Dependent Superoperator Renormalization Algorithm, Physical Review Letters 93, 207205 (2004).
- F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Matrix Product Density Operators: Simulation of Finite-Temperature and Dissipative Systems, Physical Review Letters 93, 207204 (2004).
- L. Michel and I. P. McCulloch, Schur Forms of Matrix Product Operators in the Infinite Limit, arXiv:1008.4667 [cond-mat] (2010).
- C. Hubig, I. P. McCulloch, and U. Schollwöck, Generic construction of efficient matrix product operators, Physical Review B 95, 035129 (2017).
- G. H. Golub and C. Reinsch, Singular value decomposition and least squares solutions, Numerische Mathematik 14, 403 (1970).
- I. Peschel, Calculation of reduced density matrices from correlation functions, Journal of Physics A: Mathematical and General 36, L205 (2003).
- J. I. Latorre, E. Rico, and G. Vidal, Ground state entanglement in quantum spin chains, Quantum Information & Computation 4, 48 (2004).
- M. Srednicki, Entropy and area, Physical Review Letters 71, 666 (1993).
- M. M. Wolf, Violation of the entropic area law for Fermions, Physical Review Letters 96, 010404 (2006).
- D. Gioev and I. Klich, Entanglement Entropy of Fermions in Any Dimension and the Widom Conjecture, Physical Review Letters 96, 100503 (2006), publisher: American Physical Society.
- I. Peschel and V. Eisler, Reduced density matrices and entanglement entropy in free lattice models, Journal of Physics A: Mathematical and Theoretical 42, 504003 (2009), publisher: IOP Publishing.
- J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Reviews of Modern Physics 82, 277 (2010).
- S. Yan, D. A. Huse, and S. R. White, Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet, Science 332, 1173 (2011).
- E. Stoudenmire and S. R. White, Studying Two-Dimensional Systems with the Density Matrix Renormalization Group, Annual Review of Condensed Matter Physics 3, 111 (2012).
- S. R. White and D. J. Scalapino, Density Matrix Renormalization Group Study of the Striped Phase in the 2D t-J Model, Physical Review Letters 80, 1272 (1998a).
- S. R. White and D. J. Scalapino, Hole and pair structures in the t-J model, Physical Review B 55, 6504 (1997).
- S. R. White and D. J. Scalapino, Energetics of Domain Walls in the 2D t-J Model, Physical Review Letters 81, 3227 (1998b).
- S. R. White and D. J. Scalapino, Competition between stripes and pairing in a t-J model, Physical Review B 60, R753 (1999).
- A. P. Kampf, D. J. Scalapino, and S. R. White, Stripe orientation in an anisotropic t-J model, Physical Review B 64, 052509 (2001).
- S. R. White and D. J. Scalapino, Phase separation and stripe formation in the two-dimensional t-J model: A comparison of numerical results, Physical Review B 61, 6320 (2000).
- L. Cincio and G. Vidal, Characterizing topological order by studying the ground states of an infinite cylinder, Physical Review Letters 110, 067208 (2013).
- Y. C. He, D. N. Sheng, and Y. Chen, Chiral Spin Liquid in a Frustrated Anisotropic Kagome Heisenberg Model, Physical Review Letters 112, 137202 (2014).
- G. K.-L. Chan and M. Head-Gordon, Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group, The Journal of Chemical Physics 116, 4462 (2002).
- G. K.-L. Chan and M. Head-Gordon, Exact solution (within a triple-zeta, double polarization basis set) of the electronic Schrödinger equation for water, The Journal of Chemical Physics 118, 8551 (2003).
- O. Legeza, J. Röder, and B. A. Hess, QC-DMRG study of the ionic-neutral curve crossing of LiF, Molecular Physics 101, 2019 (2003a).
- O. Legeza, J. Röder, and B. A. Hess, Controlling the accuracy of the density-matrix renormalization-group method: The dynamical block state selection approach, Physical Review B 67, 125114 (2003b).
- G. K.-L. Chan, M. Kállay, and J. Gauss, State-of-the-art density matrix renormalization group and coupled cluster theory studies of the nitrogen binding curve, The Journal of Chemical Physics 121, 6110 (2004).
- G. Moritz, B. A. Hess, and M. Reiher, Convergence behavior of the density-matrix renormalization group algorithm for optimized orbital orderings, The Journal of Chemical Physics 122, 024107 (2005a).
- G. Moritz, A. Wolf, and M. Reiher, Relativistic DMRG calculations on the curve crossing of cesium hydride, The Journal of Chemical Physics 123, 184105 (2005b).
- https://tensorflow.org/xla, accessed: 2021-10-01.
- R. A. Van De Geijn and J. Watts, SUMMA: scalable universal matrix multiplication algorithm, Concurrency: Practice and Experience 9, 255 (1997).
- S. Inglis and R. G. Melko, Entanglement at a two-dimensional quantum critical point: a T=0 projector quantum Monte Carlo study, New Journal of Physics 15, 073048 (2013).
- L. Cincio, J. Dziarmaga, and M. M. Rams, Multiscale Entanglement Renormalization Ansatz in Two Dimensions: Quantum Ising Model, Physical Review Letters 100, 240603 (2008).
- G. Evenbly and G. Vidal, Entanglement Renormalization in Two Spatial Dimensions, Physical Review Letters 102, 180406 (2009), publisher: American Physical Society.
- M. Lubasch, J. I. Cirac, and M.-C. Bañuls, Algorithms for finite Projected Entangled Pair States, Physical Review B 90, 064425 (2014).
- S. Singh, H.-Q. Zhou, and G. Vidal, Simulation of one-dimensional quantum systems with a global SU(2) symmetry, New Journal of Physics 12, 033029 (2010a).
- S. Singh, R. N. C. Pfeifer, and G. Vidal, Tensor network decompositions in the presence of a global symmetry, Physical Review A 82, 050301 (2010b).
- S. Singh and G. Vidal, Tensor network states and algorithms in the presence of a global SU(2) symmetry, Physical Review B 86, 195114 (2012).
- Y. Nakatsukasa and N. J. Higham, Backward stability of iterations for computing the polar decomposition, SIAM Journal on Matrix Analysis and Applications 33, 460 (2012).
- A. H. R. Palser and D. E. Manolopoulos, Canonical purification of the density matrix in electronic-structure theory, Phys. Rev. B 58, 12704 (1998).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.