Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On dually-CPT and strong-CPT posets (2204.04729v1)

Published 10 Apr 2022 in cs.DM

Abstract: A poset is a containment of paths in a tree (CPT) if it admits a representation by containment where each element of the poset is represented by a path in a tree and two elements are comparable in the poset if and only if the corresponding paths are related by the inclusion relation. Recently Alc\'on, Gudi~{n}o and Gutierrez introduced proper subclasses of CPT posets, namely dually-CPT, and strongly-CPT. A poset $\mathbf{P}$ is dually-CPT, if and only if $\mathbf{P}$ and its dual $\mathbf{P}{d}$ both admit a CPT representation. A poset $\mathbf{P}$ is strongly-CPT, if and only if $\mathbf{P}$ and all the posets that share the same underlying comparability graph admit a CPT representation. Where as the inclusion between Dually-CPT and CPT was known to be strict. It was raised as an open question by Alc\'on, Gudi~{n}o and Gutierrez whether strongly-CPT was a strict subclass of dually-CPT. We provide a proof that both classes actually coincide.

Summary

We haven't generated a summary for this paper yet.