Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multivariate approximation of functions on irregular domains by weighted least-squares methods (1907.12304v2)

Published 29 Jul 2019 in math.NA and cs.NA

Abstract: We propose and analyse numerical algorithms based on weighted least squares for the approximation of a real-valued function on a general bounded domain $\Omega \subset \mathbb{R}d$. Given any $n$-dimensional approximation space $V_n \subset L2(\Omega)$, the analysis in [6] shows the existence of stable and optimally converging weighted least-squares estimators, using a number of function evaluations $m$ of the order $n \log n$. When an $L2(\Omega)$-orthonormal basis of $V_n$ is available in analytic form, such estimators can be constructed using the algorithms described in [6,Section 5]. If the basis also has product form, then these algorithms have computational complexity linear in $d$ and $m$. In this paper we show that, when $\Omega$ is an irregular domain such that the analytic form of an $L2(\Omega)$-orthonormal basis is not available, stable and quasi-optimally weighted least-squares estimators can still be constructed from $V_n$, again with $m$ of the order $n \log n$, but using a suitable surrogate basis of $V_n$ orthonormal in a discrete sense. The computational cost for the calculation of the surrogate basis depends on the Christoffel function of $\Omega$ and $V_n$. Numerical results validating our analysis are presented.

Citations (16)

Summary

We haven't generated a summary for this paper yet.