Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fair and Argumentative Language Modeling for Computational Argumentation (2204.04026v1)

Published 8 Apr 2022 in cs.CL

Abstract: Although much work in NLP has focused on measuring and mitigating stereotypical bias in semantic spaces, research addressing bias in computational argumentation is still in its infancy. In this paper, we address this research gap and conduct a thorough investigation of bias in argumentative LLMs. To this end, we introduce ABBA, a novel resource for bias measurement specifically tailored to argumentation. We employ our resource to assess the effect of argumentative fine-tuning and debiasing on the intrinsic bias found in transformer-based LLMs using a lightweight adapter-based approach that is more sustainable and parameter-efficient than full fine-tuning. Finally, we analyze the potential impact of LLM debiasing on the performance in argument quality prediction, a downstream task of computational argumentation. Our results show that we are able to successfully and sustainably remove bias in general and argumentative LLMs while preserving (and sometimes improving) model performance in downstream tasks. We make all experimental code and data available at https://github.com/umanlp/FairArgumentativeLM.

Citations (20)

Summary

We haven't generated a summary for this paper yet.