Variational Quantum Evolution Equation Solver (2204.02912v1)
Abstract: Variational quantum algorithms offer a promising new paradigm for solving partial differential equations on near-term quantum computers. Here, we propose a variational quantum algorithm for solving a general evolution equation through implicit time-stepping of the Laplacian operator. The use of encoded source states informed by preceding solution vectors results in faster convergence compared to random re-initialization. Through statevector simulations of the heat equation, we demonstrate how the time complexity of our algorithm scales with the ansatz volume for gradient estimation and how the time-to-solution scales with the diffusion parameter. Our proposed algorithm extends economically to higher-order time-stepping schemes, such as the Crank-Nicolson method. We present a semi-implicit scheme for solving systems of evolution equations with non-linear terms, such as the reaction-diffusion and the incompressible Navier-Stokes equations, and demonstrate its validity by proof-of-concept results.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.