Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Familiarity-based Collaborative Team Recognition in Academic Social Networks (2204.02667v1)

Published 6 Apr 2022 in cs.SI

Abstract: Collaborative teamwork is key to major scientific discoveries. However, the prevalence of collaboration among researchers makes team recognition increasingly challenging. Previous studies have demonstrated that people are more likely to collaborate with individuals they are familiar with. In this work, we employ the definition of familiarity and then propose MOTO (faMiliarity-based cOllaborative Team recOgnition algorithm) to recognize collaborative teams. MOTO calculates the shortest distance matrix within the global collaboration network and the local density of each node. Central team members are initially recognized based on local density. Then MOTO recognizes the remaining team members by using the familiarity metric and shortest distance matrix. Extensive experiments have been conducted upon a large-scale data set. The experimental results show that compared with baseline methods, MOTO can recognize the largest number of teams. The teams recognized by MOTO possess more cohesive team structures and lower team communication costs compared with other methods. MOTO utilizes familiarity in team recognition to identify cohesive academic teams. The recognized teams are in line with real-world collaborative teamwork patterns. Based on team recognition using MOTO, the research team structure and performance are further analyzed for given time periods. The number of teams that consist of members from different institutions increases gradually. Such teams are found to perform better in comparison with those whose members are from the same institution.

Citations (11)

Summary

We haven't generated a summary for this paper yet.