Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monotone Improvement of Information-Geometric Optimization Algorithms with a Surrogate Function (2204.02638v1)

Published 6 Apr 2022 in cs.NE and math.OC

Abstract: A surrogate function is often employed to reduce the number of objective function evaluations for optimization. However, the effect of using a surrogate model in evolutionary approaches has not been theoretically investigated. This paper theoretically analyzes the information-geometric optimization framework using a surrogate function. The value of the expected objective function under the candidate sampling distribution is used as the measure of progress of the algorithm. We assume that the surrogate function is maintained so that the population version of the Kendall's rank correlation coefficient between the surrogate function and the objective function under the candidate sampling distribution is greater than or equal to a predefined threshold. We prove that information-geometric optimization using such a surrogate function leads to a monotonic decrease in the expected objective function value if the threshold is sufficiently close to one. The acceptable threshold value is analyzed for the case of the information-geometric optimization instantiated with Gaussian distributions, i.e., the rank-$\mu$ update CMA-ES, on a convex quadratic objective function. As an alternative to the Kendall's rank correlation coefficient, we investigate the use of the Pearson correlation coefficient between the weights assigned to candidate solutions based on the objective function and the surrogate function.

Citations (3)

Summary

We haven't generated a summary for this paper yet.